This first unit of the course sets you up with all the fundamentals to become a pro in agents.
- What's an AI Agent? - What are LLMs? - Messages and Special Tokens - Understanding AI Agents through the Thought-Action-Observation Cycle - Thought, Internal Reasoning and the Re-Act Approach - Actions, Enabling the Agent to Engage with Its Environment - Observe, Integrating Feedback to Reflect and Adapt
😍 Why do I love it? Because it facilitates teaching and learning!
Over the past few months I've engaged with (no joke) thousands of students based on SmolLM.
- People have inferred, fine-tuned, aligned, and evaluated this smol model. - People used they're own machines and they've used free tools like colab, kaggle, and spaces. - People tackled use cases in their job, for fun, in their own language, and with their friends.
We have been cooking a couple of fine-tuning runs on CogVideoX with finetrainers, smol datasets, and LoRA to generate cool video effects like crushing, dissolving, etc.
We are also releasing a LoRA extraction utility from a fully fine-tuned checkpoint. I know that kind of stuff has existed since eternity, but the quality on video models was nothing short of spectacular. Below are some links:
Datasets on the Hugging Face Hub rely on parquet files. We can interact with these files using DuckDB as a fast in-memory database system. One of DuckDB’s features is vector similarity search which can be used with or without an index.
Why choose between strong LLM reasoning and efficient models?
Use DeepSeek to generate high-quality training data, then distil that knowledge into ModernBERT answerdotai/ModernBERT-base for fast, efficient classification.
Given an input image, it generates several queries along with explanations to justify them. This approach can generate synthetic data for fine-tuning ColPali models.
The Hugging Face community has rated educational content in languages spoken by 1.6 billion people! New additions: • Japanese • Italian • Old High German