fyaronskiy's picture
Update README.md
9126269 verified
metadata
library_name: transformers
license: mit
datasets:
  - seara/ru_go_emotions
base_model: deepvk/deberta-v1-base
language:
  - ru
tags:
  - Text Classification
  - emotion-classification
  - emotion-recognition
  - emotion-detection
  - emotion
  - multilabel
metrics:
  - f1
  - precision
  - recall

This is the model for detecting 27 types of emotions in russian texts. Leaderboard of opensource models:

Model F1 macro F1 macro weighted Precision macro Recall macro Size
seara/rubert-tiny2-ru-go-emotions 0.33 0.48 0.51 0.29 29.2M
seara/rubert-base-cased-ru-go-emotions 0.36 0.49 0.52 0.31 178M
fyaronskiy/ruRoberta-large-ru-go-emotions default thresholds = 0.5 0.41 0.52 0.58 0.36 355M
fyaronskiy/ruRoberta-large-ru-go-emotions best thresholds 0.48 0.58 0.46 0.55 355M
fyaronskiy/deberta-v1-base-russian-go-emotions 0.48 0.57 0.46 0.54 125M

Summary

This is deepvk/deberta-v1-base model finetuned on ru_go_emotions dataset for multilabel classification. Model can be used to extract all emotions from text or detect certain emotions. Thresholds are selected on validation set by maximizing f1 macro over all labels.

The quality of the model varies greatly across all classes (look at the table with metrics below). There are classes like amusement, gratitude, fear where the model shows high recognition quality, and classes that pose difficulties for the model - relief, realization.

Usage

Using model with Huggingface Transformers:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("fyaronskiy/deepvk_deberta-v1-base__bs32_max_len128_ep10_lr5e-05_lr_sheduler_linear")
model = AutoModelForSequenceClassification.from_pretrained("fyaronskiy/deepvk_deberta-v1-base__bs32_max_len128_ep10_lr5e-05_lr_sheduler_linear")

best_thresholds = [0.5510204081632653, 0.18367346938775508, 0.1020408163265306, 0.1020408163265306, 0.18367346938775508, 0.22448979591836732, 0.2040816326530612, 0.4081632653061224, 0.2040816326530612, 0.22448979591836732, 0.24489795918367346, 0.3061224489795918, 0.16326530612244897, 0.2857142857142857, 0.3877551020408163, 0.32653061224489793, 0.02040816326530612, 0.16326530612244897, 0.44897959183673464, 0.1020408163265306, 0.22448979591836732, 0.04081632653061224, 0.12244897959183673, 0.061224489795918366, 0.14285714285714285, 0.42857142857142855, 0.3061224489795918, 0.26530612244897955]
LABELS = ['admiration', 'amusement', 'anger', 'annoyance', 'approval', 'caring', 'confusion', 'curiosity', 'desire', 'disappointment', 'disapproval', 'disgust', 'embarrassment', 'excitement', 'fear', 'gratitude', 'grief', 'joy', 'love', 'nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral']
ID2LABEL = dict(enumerate(LABELS))

Here is how you can extract emotions contained in text:

def detect_emotions(text):
  inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
  with torch.no_grad():
      logits = model(**inputs).logits
  probas = torch.sigmoid(logits).squeeze(dim=0)  
  class_binary_labels = (probas > torch.tensor(best_thresholds)).int()
  return [ID2LABEL[label_id] for label_id, value in enumerate(class_binary_labels) if value == 1]

print(detect_emotions('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))
#['admiration', 'love']

This is the way to get all emotions and their scores:

def predict(text):
    inputs = tokenizer(text, truncation=True, add_special_tokens=True, max_length=128, return_tensors='pt')
    with torch.no_grad():
        logits = model(**inputs).logits
    probas = torch.sigmoid(logits).squeeze(dim=0).tolist()
    probas = [round(proba, 3) for proba in probas]    
    
    labels2probas = dict(zip(LABELS, probas))
    probas_dict_sorted = dict(sorted(labels2probas.items(), key=lambda x: x[1], reverse=True))
    return probas_dict_sorted

print(predict('У вас отличный сервис и лучший кофе в городе, обожаю вашу кофейню!'))
'''{'admiration': 0.842,
 'amusement': 0.001,
 'anger': 0.001,
 'annoyance': 0.001,
 'approval': 0.039,
 'caring': 0.002,
 'confusion': 0.003,
 'curiosity': 0.005,
 'desire': 0.002,
 'disappointment': 0.001,
 'disapproval': 0.001,
 'disgust': 0.0,
 'embarrassment': 0.0,
 'excitement': 0.009,
 'fear': 0.0,
 'gratitude': 0.034,
 'grief': 0.0,
 'joy': 0.025,
 'love': 0.675,
 'nervousness': 0.0,
 'neutral': 0.007,
 'optimism': 0.003,
 'pride': 0.001,
 'realization': 0.002,
 'relief': 0.0,
 'remorse': 0.0,
 'sadness': 0.001,
 'surprise': 0.002}'''

Eval results on test split of ru-go-emotions

precision recall f1-score support threshold
admiration 0.69 0.67 0.68 504 0.55
amusement 0.72 0.91 0.81 264 0.18
anger 0.35 0.53 0.42 198 0.1
annoyance 0.24 0.46 0.32 320 0.1
approval 0.33 0.44 0.38 351 0.18
caring 0.37 0.5 0.42 135 0.22
confusion 0.43 0.42 0.42 153 0.2
curiosity 0.44 0.71 0.54 284 0.41
desire 0.46 0.43 0.45 83 0.2
disappointment 0.3 0.31 0.31 151 0.22
disapproval 0.37 0.57 0.45 267 0.24
disgust 0.45 0.41 0.43 123 0.31
embarrassment 0.62 0.35 0.45 37 0.16
excitement 0.3 0.34 0.32 103 0.29
fear 0.67 0.62 0.64 78 0.39
gratitude 0.92 0.87 0.89 352 0.33
grief 0.02 0.33 0.04 6 0.02
joy 0.41 0.66 0.51 161 0.16
love 0.71 0.83 0.76 238 0.45
nervousness 0.24 0.35 0.28 23 0.1
optimism 0.58 0.55 0.57 186 0.22
pride 0.58 0.44 0.5 16 0.04
realization 0.25 0.23 0.24 145 0.12
relief 0.27 0.36 0.31 11 0.06
remorse 0.49 0.91 0.63 56 0.14
sadness 0.53 0.53 0.53 156 0.43
surprise 0.49 0.54 0.51 141 0.31
neutral 0.59 0.78 0.67 1787 0.27
micro avg 0.5 0.64 0.56 6329
macro avg 0.46 0.54 0.48 6329
weighted avg 0.53 0.64 0.57 6329
samples avg 0.55 0.67 0.58 6329

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • seed: 28
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 7