fyaronskiy commited on
Commit
9126269
·
verified ·
1 Parent(s): ba31653

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -9
README.md CHANGED
@@ -21,13 +21,13 @@ metrics:
21
 
22
  This is the model for detecting 27 types of emotions in russian texts. Leaderboard of opensource models:
23
 
24
- | Model | F1 macro | F1 macro weighted | Precision macro | Recall macro |
25
- |------------------------------------------------------------------------|----------|-------------------|-----------------|--------------|
26
- | seara/rubert-tiny2-ru-go-emotions | 0.33 | 0.48 | 0.51 | 0.29 |
27
- | seara/rubert-base-cased-ru-go-emotions | 0.36 | 0.49 | 0.52 | 0.31 |
28
- | fyaronskiy/ruRoberta-large-ru-go-emotions default thresholds = 0.5 | 0.41 | 0.52 | **0.58** | 0.36 |
29
- | fyaronskiy/ruRoberta-large-ru-go-emotions best thresholds | **0.48** | **0.58** | 0.46 | **0.55** |
30
- | fyaronskiy/deberta-v1-base-russian-go-emotions | **0.48** | 0.57 | 0.46 | 0.54 |
31
 
32
  # Summary
33
  This is [deepvk/deberta-v1-base](https://huggingface.co/deepvk/deberta-v1-base) model finetuned on [ru_go_emotions](https://huggingface.co/datasets/seara/ru_go_emotions)
@@ -35,8 +35,7 @@ dataset for multilabel classification. Model can be used to extract all emotions
35
  Thresholds are selected on validation set by maximizing f1 macro over all labels.
36
 
37
  The quality of the model varies greatly across all classes (look at the table with metrics below). There are classes like
38
- amusement, gratitude, where the model shows high recognition quality, and classes that pose difficulties for the model - grief, relief,
39
- that do have much fewer examples in the training data.
40
 
41
  # Usage
42
  Using model with Huggingface Transformers:
 
21
 
22
  This is the model for detecting 27 types of emotions in russian texts. Leaderboard of opensource models:
23
 
24
+ | Model | F1 macro | F1 macro weighted | Precision macro | Recall macro | Size|
25
+ |------------------------------------------------------------------------|----------|-------------------|-----------------|--------------|-----|
26
+ | [seara/rubert-tiny2-ru-go-emotions](https://huggingface.co/seara/rubert-tiny2-russian-emotion-detection-ru-go-emotions) | 0.33 | 0.48 | 0.51 | 0.29 | 29.2M|
27
+ | [seara/rubert-base-cased-ru-go-emotions](https://huggingface.co/seara/rubert-base-cased-russian-emotion-detection-ru-go-emotions) | 0.36 | 0.49 | 0.52 | 0.31 | 178M|
28
+ | [fyaronskiy/ruRoberta-large-ru-go-emotions](https://huggingface.co/fyaronskiy/ruRoberta-large-ru-go-emotions) default thresholds = 0.5 | 0.41 | 0.52 | **0.58** | 0.36 | 355M |
29
+ | [fyaronskiy/ruRoberta-large-ru-go-emotions](https://huggingface.co/fyaronskiy/ruRoberta-large-ru-go-emotions) best thresholds | **0.48** | **0.58** | 0.46 | **0.55** | 355M |
30
+ | [fyaronskiy/deberta-v1-base-russian-go-emotions](https://huggingface.co/fyaronskiy/deberta-v1-base-russian-go-emotions) | **0.48** | 0.57 | 0.46 | 0.54 | 125M |
31
 
32
  # Summary
33
  This is [deepvk/deberta-v1-base](https://huggingface.co/deepvk/deberta-v1-base) model finetuned on [ru_go_emotions](https://huggingface.co/datasets/seara/ru_go_emotions)
 
35
  Thresholds are selected on validation set by maximizing f1 macro over all labels.
36
 
37
  The quality of the model varies greatly across all classes (look at the table with metrics below). There are classes like
38
+ amusement, gratitude, fear where the model shows high recognition quality, and classes that pose difficulties for the model - relief, realization.
 
39
 
40
  # Usage
41
  Using model with Huggingface Transformers: