|
--- |
|
library_name: diffusers |
|
license: creativeml-openrail-m |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- diffusers-training |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- image-to-video |
|
- diffusers |
|
- diffusers-training |
|
inference: true |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the training script had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# Image-to-Video finetuning - zhuhz22/try4 |
|
|
|
## Pipeline usage |
|
|
|
You can use the pipeline like so: |
|
|
|
```python |
|
from diffusers import EulerDiscreteScheduler |
|
import torch |
|
from diffusers.utils import load_image, export_to_video |
|
from svd.inference.pipline_CILsvd import StableVideoDiffusionCILPipeline |
|
|
|
# set the start time M (sigma_max) for inference |
|
scheduler = EulerDiscreteScheduler.from_pretrained( |
|
"zhuhz22/try4", |
|
subfolder="scheduler", |
|
sigma_max=100 |
|
) |
|
|
|
pipeline = StableVideoDiffusionCILPipeline.from_pretrained( |
|
"zhuhz22/try4", scheduler=scheduler, torch_dtype=torch.float16, variant="fp16" |
|
) # Note that set the default parameters, fps, motion_bucket_id |
|
|
|
pipeline.enable_model_cpu_offload() |
|
|
|
# demo |
|
image = load_image("demo/a car parked in a parking lot with palm trees nearby,calm seas and skies..png") |
|
image = image.resize((512,320)) |
|
|
|
generator = torch.manual_seed(42) |
|
|
|
# analytic_path: |
|
# if is video path, compute the initial noise automatically. |
|
# if is tensor path, load |
|
# if none, standard inference |
|
analytic_path=None |
|
|
|
frames = pipeline( |
|
image, |
|
height=image.height, |
|
width=image.width, |
|
num_frames=16, |
|
fps=3, |
|
motion_bucket_id=20, |
|
decode_chunk_size=8, |
|
generator=generator, |
|
analytic_path=analytic_path |
|
).frames[0] |
|
|
|
export_to_video(frames, "generated.mp4", fps=7) |
|
|
|
``` |
|
|
|
|
|
|
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
```python |
|
# TODO: add an example code snippet for running this diffusion pipeline |
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
[TODO: provide examples of latent issues and potential remediations] |
|
|
|
## Training details |
|
|
|
[TODO: describe the data used to train the model] |