SentenceTransformer based on distilbert/distilbert-base-uncased-finetuned-sst-2-english
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased-finetuned-sst-2-english. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased-finetuned-sst-2-english
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("wasabibish/similarity-code-ai-generated")
# Run inference
sentences = [
'def move_zeroes(nums):\n count = 0\n for i in range(len(nums)):\n if nums[i] != 0:\n nums[count], nums[i]= nums[i], nums[count]\n count += 1\n for i in range(count, len(nums)):\n nums[i] =0\n\ninput = [int(x) for x in input("Enter integers separated by spaces: ").split()]\nmove_zeroes(input)\n\nprint(input)',
'def move_zeros_to_end(lst):\n zero_count = 0\n for i in range(len(lst)):\n if lst[i] != 0:\n lst[i], lst[zero_count] = lst[zero_count], lst[i]\n zero_count += 1\n\n# Test cases\nlst1 = [0, 1, 0, 3, 12]\nmove_zeros_to_end(lst1)\nprint(lst1) # Output: [1, 3, 12, 0, 0]\n\nlst2 = [0, 0, 1]\nmove_zeros_to_end(lst2)\nprint(lst2) # Output: [1, 0, 0]\n',
'using System;\nusing System.Collections.Generic;\n\nclass BracketChecker\n{\n private readonly Dictionary<char, char> bracketPairs = new Dictionary<char, char>\n {\n { \'(\', \')\' },\n { \'[\', \']\' },\n { \'{\', \'}\' }\n };\n\n public bool CheckBalancedBrackets(string input)\n {\n if (string.IsNullOrEmpty(input))\n {\n return true;\n }\n\n Stack<char> stack = new Stack<char>();\n\n foreach (char c in input)\n {\n if (bracketPairs.ContainsValue(c))\n {\n if (stack.Count == 0 || bracketPairs[stack.Peek()] != c)\n {\n return false;\n }\n stack.Pop();\n }\n else if (bracketPairs.ContainsKey(c))\n {\n stack.Push(c);\n }\n }\n\n return stack.Count == 0;\n }\n}\n\nclass Program\n{\n static void Main()\n {\n BracketChecker bracketChecker = new BracketChecker();\n\n string input1 = "(a+[b*c]-{d/e})";\n Console.WriteLine("Input: \\"{0}\\"", input1);\n Console.WriteLine("Output: {0}\\n", bracketChecker.CheckBalancedBrackets(input1));\n\n string input2 = "(a+[b*c)-{d/e}]";\n Console.WriteLine("Input: \\"{0}\\"", input2);\n Console.WriteLine("Output: {0}", bracketChecker.CheckBalancedBrackets(input2));\n }\n}\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9 |
spearman_cosine | 0.9014 |
pearson_manhattan | 0.862 |
spearman_manhattan | 0.802 |
pearson_euclidean | 0.8685 |
spearman_euclidean | 0.8234 |
pearson_dot | 0.8495 |
spearman_dot | 0.8948 |
pearson_max | 0.9 |
spearman_max | 0.9014 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 302 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 302 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 206.43 tokens
- max: 512 tokens
- min: 27 tokens
- mean: 244.9 tokens
- max: 512 tokens
- min: 0.0
- mean: 0.29
- max: 0.9
- Samples:
sentence1 sentence2 score from django.views.generic import ListView
class PersonListView(ListView):
model = Person
template_name = 'person_list.html'
def get_queryset(self):
return Person.objects.filter(birthdate__year__lte=2005)from myapp.models import Customer # Import the Customer model from your Django app
def get_customers_with_zip_code_starting_with_123():
customers = Customer.objects.filter(zip_code__startswith='123').values() # Query to filter customers with zip_code starting with '123'
return list(customers) # Return a list of dictionaries for matching records0.4
Welcome to our website!
function createSentence(words, maxChars) {
if (words.length === 0AAAAAA
#include
#include
class KMP {
public:
std::vector findPatternIndices(const CString& text, const CString& pattern) {
std::vector indices;
if (pattern.IsEmpty() - Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 76 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 76 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 216.92 tokens
- max: 512 tokens
- min: 54 tokens
- mean: 254.78 tokens
- max: 512 tokens
- min: 0.0
- mean: 0.33
- max: 0.9
- Samples:
sentence1 sentence2 score function stripHtmlTags(str) {
return str.replace(/<[^>]*>/g, '');
}
const input = 'Hello World!
';
const output = stripHtmlTags(input);
console.log(output);function stripHtmlTags(input) {
if (!input) return '';
const tagRegex = /<[^>]*>/g;
return input.replace(tagRegex, '');
}0.6
function getTopThreeWords($text) {
// Remove punctuation and convert to lowercase
$words = str_word_count(strtolower(preg_replace('/[^\p{L}\p{N}\s]/u', ' ', $text)), 1);
// Count the frequency of each word
$wordFrequency = array_count_values($words);
// Sort the words by frequency in descending order
arsort($wordFrequency);
// Get the top three words
$topThreeWords = array_slice($wordFrequency, 0, 3, true);
// Format the output
$output = [];
foreach ($topThreeWords as $word => $count) {
$output[] = "('$word', $count)";
}
return '[' . implode(', ', $output) . ']';
}
// Example usage:
$inputText = "The quick brown fox jumps over the lazy dog. The dog was lazy!";
echo getTopThreeWords($inputText);
?>
function countTopWords($inputString) {
// Convert the input string to lowercase and remove punctuation
$cleanString = preg_replace("/[\W_]+/", " ", strtolower($inputString));
// Split the string into an array of words
$words = explode(" ", $cleanString);
// Count the frequency of each word
$wordCount = array_count_values($words);
// Sort the words by frequency in descending order
arsort($wordCount);
// Get the top three most common words
$topWords = array_slice($wordCount, 0, 3);
// Format the output as an array of tuples
$output = [];
foreach ($topWords as $word => $count) {
$output[] = [$word, $count];
}
return $output;
}
// Test the function with the example input
$inputString = "The quick brown fox jumps over the lazy dog. The dog was lazy!";
$output = countTopWords($inputString);
print_r($output);
?>0.3
AAAAAA
#include
#include
class KMP {
public:
std::vector findPatternIndices(const CString& text, const CString& pattern) {
std::vector indices;
if (pattern.IsEmpty() - Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsweight_decay
: 0.2max_steps
: 100warmup_steps
: 150
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.2adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 100lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 150log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | loss | spearman_max |
---|---|---|---|
0.5263 | 20 | 0.3765 | 0.5421 |
1.0526 | 40 | 0.1518 | 0.5774 |
1.5789 | 60 | 0.0501 | 0.8533 |
2.1053 | 80 | 0.0217 | 0.8900 |
2.6316 | 100 | 0.0168 | 0.9014 |
Framework Versions
- Python: 3.9.10
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cpu
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 203
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for wasabibish/similarity-code-ai-generated
Evaluation results
- Pearson Cosine on Unknownself-reported0.900
- Spearman Cosine on Unknownself-reported0.901
- Pearson Manhattan on Unknownself-reported0.862
- Spearman Manhattan on Unknownself-reported0.802
- Pearson Euclidean on Unknownself-reported0.868
- Spearman Euclidean on Unknownself-reported0.823
- Pearson Dot on Unknownself-reported0.849
- Spearman Dot on Unknownself-reported0.895
- Pearson Max on Unknownself-reported0.900
- Spearman Max on Unknownself-reported0.901