Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 785ff67fe820a49a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/785ff67fe820a49a_train_data.json
  type:
    field_instruction: init_prompt
    field_output: init_response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: true
hub_model_id: tuantmdev/28bab35d-c2fa-4aa2-b0c5-39f0ffe43e3f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1e-4
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 40
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 400
micro_batch_size: 2
mlflow_experiment_name: /tmp/785ff67fe820a49a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 56600945-b760-44be-9fdc-7a38b0eec0cc
wandb_project: Gradients-On-Demand
wandb_run: unknown
wandb_runid: 56600945-b760-44be-9fdc-7a38b0eec0cc
warmup_steps: 80
weight_decay: 0.0
xformers_attention: null

28bab35d-c2fa-4aa2-b0c5-39f0ffe43e3f

This model is a fine-tuned version of zake7749/gemma-2-2b-it-chinese-kyara-dpo on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4837

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 80
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss
No log 0.0004 1 1.8523
1.0202 0.0190 50 0.8042
0.693 0.0380 100 0.7604
0.6285 0.0570 150 0.6826
0.5484 0.0760 200 0.6116
0.558 0.0949 250 0.5572
0.5536 0.1139 300 0.5027
0.5139 0.1329 350 0.4869
0.4919 0.1519 400 0.4837

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for tuantmdev/28bab35d-c2fa-4aa2-b0c5-39f0ffe43e3f

Base model

google/gemma-2-2b
Adapter
(350)
this model