CrossEncoder based on distilbert/distilroberta-base
This is a Cross Encoder model finetuned from distilbert/distilroberta-base on the all-nli dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 514 tokens
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-distilroberta-base-nli")
# Get scores for pairs...
pairs = [
['Two women are embracing while holding to go packages.', 'The sisters are hugging goodbye while holding to go packages after just eating lunch.'],
['Two women are embracing while holding to go packages.', 'Two woman are holding packages.'],
['Two women are embracing while holding to go packages.', 'The men are fighting outside a deli.'],
['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids in numbered jerseys wash their hands.'],
['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids at a ballgame wash their hands.'],
]
scores = model.predict(pairs)
print(scores.shape)
# [5]
# ... or rank different texts based on similarity to a single text
ranks = model.rank(
'Two women are embracing while holding to go packages.',
[
'The sisters are hugging goodbye while holding to go packages after just eating lunch.',
'Two woman are holding packages.',
'The men are fighting outside a deli.',
'Two kids in numbered jerseys wash their hands.',
'Two kids at a ballgame wash their hands.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Classification
- Datasets:
AllNLI-dev
andAllNLI-test
- Evaluated with
CEClassificationEvaluator
Metric | AllNLI-dev | AllNLI-test |
---|---|---|
f1_macro | 0.8495 | 0.7574 |
f1_micro | 0.851 | 0.7576 |
f1_weighted | 0.8495 | 0.7583 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 942,069 training samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 23 characters
- mean: 69.54 characters
- max: 227 characters
- min: 11 characters
- mean: 38.26 characters
- max: 131 characters
- 0: ~33.40%
- 1: ~33.30%
- 2: ~33.30%
- Samples:
premise hypothesis label A person on a horse jumps over a broken down airplane.
A person is training his horse for a competition.
1
A person on a horse jumps over a broken down airplane.
A person is at a diner, ordering an omelette.
2
A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
0
- Loss:
CrossEntropyLoss
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 19,657 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 16 characters
- mean: 75.01 characters
- max: 229 characters
- min: 11 characters
- mean: 37.66 characters
- max: 116 characters
- 0: ~33.10%
- 1: ~33.30%
- 2: ~33.60%
- Samples:
premise hypothesis label Two women are embracing while holding to go packages.
The sisters are hugging goodbye while holding to go packages after just eating lunch.
1
Two women are embracing while holding to go packages.
Two woman are holding packages.
0
Two women are embracing while holding to go packages.
The men are fighting outside a deli.
2
- Loss:
CrossEntropyLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | AllNLI-dev_f1_macro | AllNLI-test_f1_macro |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.1677 | - |
0.0640 | 100 | 1.0454 | - | - | - |
0.1280 | 200 | 0.7193 | - | - | - |
0.1919 | 300 | 0.6247 | - | - | - |
0.2559 | 400 | 0.5907 | - | - | - |
0.3199 | 500 | 0.5671 | 0.4578 | 0.8206 | - |
0.3839 | 600 | 0.5384 | - | - | - |
0.4479 | 700 | 0.5492 | - | - | - |
0.5118 | 800 | 0.5281 | - | - | - |
0.5758 | 900 | 0.5043 | - | - | - |
0.6398 | 1000 | 0.5243 | 0.4012 | 0.8415 | - |
0.7038 | 1100 | 0.4906 | - | - | - |
0.7678 | 1200 | 0.4877 | - | - | - |
0.8317 | 1300 | 0.4506 | - | - | - |
0.8957 | 1400 | 0.4728 | - | - | - |
0.9597 | 1500 | 0.4602 | 0.3731 | 0.8495 | - |
-1 | -1 | - | - | - | 0.7574 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.015 kWh
- Carbon Emitted: 0.006 kg of CO2
- Hours Used: 0.058 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the HF Inference API does not support sentence-transformers models with pipeline type text-classification
Model tree for tomaarsen/reranker-distilroberta-base-nli
Base model
distilbert/distilroberta-baseDataset used to train tomaarsen/reranker-distilroberta-base-nli
Evaluation results
- F1 Macro on AllNLI devself-reported0.850
- F1 Micro on AllNLI devself-reported0.851
- F1 Weighted on AllNLI devself-reported0.849
- F1 Macro on AllNLI testself-reported0.757
- F1 Micro on AllNLI testself-reported0.758
- F1 Weighted on AllNLI testself-reported0.758