led-base-16384-lfqa
This model is a fine-tuned version of stefanbschneider/led-base-16384-lfqa-ans-len-512 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.2615
- Rouge2: 0.0416
- Task: {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge2 | Task |
---|---|---|---|---|---|
3.4849 | 0.0395 | 2000 | 3.4233 | 0.0387 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4744 | 0.0789 | 4000 | 3.4411 | 0.0398 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4919 | 0.1184 | 6000 | 3.4251 | 0.0378 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.487 | 0.1578 | 8000 | 3.4200 | 0.0397 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4443 | 0.1973 | 10000 | 3.3870 | 0.0376 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4597 | 0.2367 | 12000 | 3.3914 | 0.0405 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4525 | 0.2762 | 14000 | 3.3845 | 0.0398 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4618 | 0.3156 | 16000 | 3.3752 | 0.0424 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4573 | 0.3551 | 18000 | 3.3693 | 0.0421 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4164 | 0.3945 | 20000 | 3.3640 | 0.042 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.4125 | 0.4340 | 22000 | 3.3544 | 0.0412 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3828 | 0.4734 | 24000 | 3.3423 | 0.0409 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3965 | 0.5129 | 26000 | 3.3436 | 0.0416 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3993 | 0.5524 | 28000 | 3.3339 | 0.0384 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3909 | 0.5918 | 30000 | 3.3122 | 0.0414 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3745 | 0.6313 | 32000 | 3.3158 | 0.0416 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3665 | 0.6707 | 34000 | 3.3038 | 0.0424 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3351 | 0.7102 | 36000 | 3.2915 | 0.0435 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3629 | 0.7496 | 38000 | 3.2955 | 0.0436 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3465 | 0.7891 | 40000 | 3.2888 | 0.0395 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3127 | 0.8285 | 42000 | 3.2800 | 0.0414 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3385 | 0.8680 | 44000 | 3.2767 | 0.0413 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.2882 | 0.9074 | 46000 | 3.2685 | 0.0437 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3162 | 0.9469 | 48000 | 3.2639 | 0.0412 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
3.3072 | 0.9863 | 50000 | 3.2615 | 0.0416 | {'name': 'Sequence-to-sequence Language Modeling', 'type': 'text2text-generation'} |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for stefanbschneider/led-base-16384-lfqa
Base model
allenai/led-base-16384