layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6932
  • Answer: {'precision': 0.7073434125269978, 'recall': 0.8096415327564895, 'f1': 0.755043227665706, 'number': 809}
  • Header: {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119}
  • Question: {'precision': 0.7767158992180713, 'recall': 0.8394366197183099, 'f1': 0.8068592057761733, 'number': 1065}
  • Overall Precision: 0.7217
  • Overall Recall: 0.7913
  • Overall F1: 0.7549
  • Overall Accuracy: 0.8047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8958 1.0 5 1.7117 {'precision': 0.015232292460015232, 'recall': 0.024721878862793572, 'f1': 0.01885014137606032, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.11567164179104478, 'recall': 0.11643192488262911, 'f1': 0.11605053813757606, 'number': 1065} 0.0601 0.0723 0.0656 0.3457
1.632 2.0 10 1.4951 {'precision': 0.027700831024930747, 'recall': 0.037082818294190356, 'f1': 0.03171247357293869, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3054968287526427, 'recall': 0.27136150234741785, 'f1': 0.2874191944306315, 'number': 1065} 0.1571 0.1601 0.1586 0.4391
1.4434 3.0 15 1.2975 {'precision': 0.1747173689619733, 'recall': 0.21013597033374537, 'f1': 0.19079685746352415, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.39224704336399474, 'recall': 0.5605633802816902, 'f1': 0.46153846153846156, 'number': 1065} 0.3074 0.3848 0.3418 0.5806
1.2417 4.0 20 1.1193 {'precision': 0.3728470111448835, 'recall': 0.45488257107540175, 'f1': 0.40979955456570155, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5278207109737248, 'recall': 0.6413145539906103, 'f1': 0.5790589232725731, 'number': 1065} 0.4608 0.5273 0.4918 0.6383
1.0407 5.0 25 0.9770 {'precision': 0.48043478260869565, 'recall': 0.546353522867738, 'f1': 0.5112781954887218, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5961698584512906, 'recall': 0.672300469483568, 'f1': 0.6319505736981466, 'number': 1065} 0.5447 0.5810 0.5623 0.6890
0.8977 6.0 30 0.8662 {'precision': 0.559375, 'recall': 0.6637824474660075, 'f1': 0.6071226681741096, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6157517899761337, 'recall': 0.7267605633802817, 'f1': 0.6666666666666667, 'number': 1065} 0.5845 0.6578 0.6190 0.7313
0.787 7.0 35 0.8246 {'precision': 0.6031589338598223, 'recall': 0.7552533992583437, 'f1': 0.6706915477497257, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6820194862710364, 'recall': 0.7230046948356808, 'f1': 0.7019143117593437, 'number': 1065} 0.6332 0.6929 0.6617 0.7434
0.6913 8.0 40 0.7630 {'precision': 0.6112820512820513, 'recall': 0.7367119901112484, 'f1': 0.6681614349775784, 'number': 809} {'precision': 0.02702702702702703, 'recall': 0.01680672268907563, 'f1': 0.02072538860103627, 'number': 119} {'precision': 0.6604795050270689, 'recall': 0.8018779342723005, 'f1': 0.7243426632739611, 'number': 1065} 0.6200 0.7285 0.6699 0.7753
0.6196 9.0 45 0.7427 {'precision': 0.629145728643216, 'recall': 0.7737948084054388, 'f1': 0.6940133037694012, 'number': 809} {'precision': 0.08108108108108109, 'recall': 0.05042016806722689, 'f1': 0.062176165803108814, 'number': 119} {'precision': 0.7155247181266262, 'recall': 0.7746478873239436, 'f1': 0.7439134355275022, 'number': 1065} 0.6557 0.7311 0.6913 0.7750
0.57 10.0 50 0.7250 {'precision': 0.6613588110403397, 'recall': 0.7700865265760197, 'f1': 0.7115933752141633, 'number': 809} {'precision': 0.14285714285714285, 'recall': 0.09243697478991597, 'f1': 0.11224489795918367, 'number': 119} {'precision': 0.6997538966365874, 'recall': 0.8009389671361502, 'f1': 0.7469352014010507, 'number': 1065} 0.6644 0.7461 0.7029 0.7852
0.5314 11.0 55 0.7002 {'precision': 0.6476578411405295, 'recall': 0.7861557478368356, 'f1': 0.7102177554438861, 'number': 809} {'precision': 0.16216216216216217, 'recall': 0.10084033613445378, 'f1': 0.12435233160621763, 'number': 119} {'precision': 0.7123745819397993, 'recall': 0.8, 'f1': 0.7536488279522335, 'number': 1065} 0.6661 0.7526 0.7067 0.7901
0.4856 12.0 60 0.6901 {'precision': 0.682454251883746, 'recall': 0.7836835599505563, 'f1': 0.7295742232451092, 'number': 809} {'precision': 0.2717391304347826, 'recall': 0.21008403361344538, 'f1': 0.23696682464454974, 'number': 119} {'precision': 0.7309602649006622, 'recall': 0.8291079812206573, 'f1': 0.7769467663880335, 'number': 1065} 0.6918 0.7737 0.7305 0.8001
0.4486 13.0 65 0.6915 {'precision': 0.6917211328976035, 'recall': 0.7849196538936959, 'f1': 0.7353792704111175, 'number': 809} {'precision': 0.25806451612903225, 'recall': 0.20168067226890757, 'f1': 0.22641509433962265, 'number': 119} {'precision': 0.7395659432387313, 'recall': 0.831924882629108, 'f1': 0.7830313742819267, 'number': 1065} 0.6994 0.7752 0.7354 0.8011
0.4177 14.0 70 0.6835 {'precision': 0.6862326574172892, 'recall': 0.7948084054388134, 'f1': 0.736540664375716, 'number': 809} {'precision': 0.24731182795698925, 'recall': 0.19327731092436976, 'f1': 0.2169811320754717, 'number': 119} {'precision': 0.7416666666666667, 'recall': 0.8356807511737089, 'f1': 0.7858719646799116, 'number': 1065} 0.6978 0.7807 0.7369 0.8026
0.3927 15.0 75 0.6891 {'precision': 0.7016393442622951, 'recall': 0.7935723114956736, 'f1': 0.7447795823665894, 'number': 809} {'precision': 0.2358490566037736, 'recall': 0.21008403361344538, 'f1': 0.22222222222222224, 'number': 119} {'precision': 0.7632478632478632, 'recall': 0.8384976525821596, 'f1': 0.7991051454138701, 'number': 1065} 0.7120 0.7827 0.7457 0.8038
0.3743 16.0 80 0.6904 {'precision': 0.7064622124863089, 'recall': 0.7972805933250927, 'f1': 0.7491289198606274, 'number': 809} {'precision': 0.27450980392156865, 'recall': 0.23529411764705882, 'f1': 0.2533936651583711, 'number': 119} {'precision': 0.7675814751286449, 'recall': 0.8403755868544601, 'f1': 0.8023307933662035, 'number': 1065} 0.7189 0.7868 0.7513 0.8034
0.3683 17.0 85 0.6928 {'precision': 0.7037837837837838, 'recall': 0.8046971569839307, 'f1': 0.7508650519031143, 'number': 809} {'precision': 0.2545454545454545, 'recall': 0.23529411764705882, 'f1': 0.2445414847161572, 'number': 119} {'precision': 0.7735191637630662, 'recall': 0.8338028169014085, 'f1': 0.8025305015815634, 'number': 1065} 0.7178 0.7863 0.7505 0.8035
0.3553 18.0 90 0.6940 {'precision': 0.7045454545454546, 'recall': 0.8046971569839307, 'f1': 0.7512983266012695, 'number': 809} {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119} {'precision': 0.7739130434782608, 'recall': 0.8356807511737089, 'f1': 0.8036117381489841, 'number': 1065} 0.7191 0.7873 0.7516 0.8035
0.3471 19.0 95 0.6932 {'precision': 0.7071583514099783, 'recall': 0.8059332509270705, 'f1': 0.753321779318313, 'number': 809} {'precision': 0.2545454545454545, 'recall': 0.23529411764705882, 'f1': 0.2445414847161572, 'number': 119} {'precision': 0.7746967071057193, 'recall': 0.8394366197183099, 'f1': 0.8057683641279857, 'number': 1065} 0.7200 0.7898 0.7533 0.8043
0.3386 20.0 100 0.6932 {'precision': 0.7073434125269978, 'recall': 0.8096415327564895, 'f1': 0.755043227665706, 'number': 809} {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119} {'precision': 0.7767158992180713, 'recall': 0.8394366197183099, 'f1': 0.8068592057761733, 'number': 1065} 0.7217 0.7913 0.7549 0.8047

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
12
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for srinidhireddy1604/layoutlm-funsd

Finetuned
(149)
this model
Finetunes
1 model