ollamafy / app.py
unclemusclez's picture
Update app.py
6b057bb verified
raw
history blame
7.96 kB
import os
import shutil
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
from textwrap import dedent
HF_TOKEN = os.environ.get("HF_TOKEN")
OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME").lower()
ollama_pubkey = open("/home/user/.ollama/id_ed25519.pub", "r")
ollama_q_methods = ["FP16","Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"]
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, ollamafy, latest, maintainer, oauth_token: gr.OAuthToken | None):
if oauth_token.token is None:
raise ValueError("You must be logged in to use GGUF-my-repo")
model_name = model_id.split('/')[-1]
fp16 = f"{model_name}.fp16.gguf"
try:
api = HfApi(token=oauth_token.token)
dl_pattern = ["*.md", "*.json", "*.model"]
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern += pattern
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Current working directory: {os.getcwd()}")
print(f"Model directory contents: {os.listdir(model_name)}")
conversion_script = "convert_hf_to_gguf.py"
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {fp16}")
### Ollamafy ###
if ollama_model:
model_maintainer = model_id.split('/')[-2]
ollama_model_name = model_maintainer.lower() + '_' + model_name.lower()
ollama_modelfile_name = model_name + '_modelfile'
# model_path = f"{HOME}/.cache/huggingface/hub/{model_id}"
ollama_modelfile = open(ollama_modelfile_name, "w")
# ollama_modelfile_path = quantized_gguf_path
ollama_modelfile.write(quantized_gguf_path)
ollama_modelfile.close()
print(quantized_gguf_path)
for ollama_q_method in ollama_q_methods:
if ollama_q_method == "FP16":
ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
else:
ollama_conversion = f"ollama create -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True)
print(ollama_conversion_result)
if ollama_conversion_result.returncode != 0:
raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}")
print("Model converted to Ollama successfully!")
if maintainer:
ollama_push = f"ollama push {OLLAMA_USERNAME}/{model_name}:{q_method.lower()}"
else:
ollama_push = f"ollama push {OLLAMA_USERNAME}/{ollama_model_name}:{q_method.lower()}"
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
print(ollama_push_result)
if ollama_push_result.returncode != 0:
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
print("Model pushed to Ollama library successfully!")
if latest == True:
ollama_copy = f"ollama cp {OLLAMA_USERNAME}/{model_id.lower()}:{q_method.lower()} {OLLAMA_USERNAME}/{model_id.lower()}:latest"
ollama_copy_result = subprocess.run(ollama_copy, shell=True, capture_output=True)
print(ollama_copy_result)
if ollama_copy_result.returncode != 0:
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
print("Model pushed to Ollama library successfully!")
if maintainer == True:
llama_push_latest = f"ollama push {OLLAMA_USERNAME}/{model_name}:latest"
else:
ollama_push_latest = f"ollama push {OLLAMA_USERNAME}/{ollama_model_name}:latest"
ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True)
print(ollama_push_latest_result)
if ollama_push_latest_result.returncode != 0:
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
print("Model pushed to Ollama library successfully!")
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(model_name, ignore_errors=True)
print("Folder cleaned up successfully!")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.LoginButton(min_width=250)
gr.Markdown("You must be logged in to use Ollamafy.")
gr.Markdown(ollama_pubkey.read().rstrip())
ollama_pubkey.close()
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
ollama_q_method
latest = gr.Dropdown(
ollama_q_methods,
label="Ollama Lastest Quantization Method",
info="Chose which quantization will be labled with the latest tag in the Ollama Library",
value="FP16",
filterable=False,
visible=False
)
latest = gr.Checkbox(
value=False,
label="Latest",
info="Copy Model to Ollama Library with the :latest tag"
)
maintainer = gr.Checkbox(
value=False,
label="Maintainer",
info="This is your original repository on both Hugging Face and Ollama. (DO NOT USE!!!)"
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
ollama_q_method,
latest,
maintainer
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own Ollama Models and Push them to the Ollama Library, blazingly fast ⚡!",
description="Sampled from https://huggingface.co/spaces/ggml-org/gguf-my-repo and https://huggingface.co/spaces/gingdev/ollama-server",
api_name=False
)
#username = whoami(oauth_token.token)["name"]
def restart_space():
HfApi().restart_space(repo_id="unclemusclez/ollamafy", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)