Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -18,20 +18,15 @@ from textwrap import dedent
|
|
18 |
|
19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME").lower()
|
21 |
-
ollama_pubkey = open("/home/
|
22 |
-
|
23 |
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
def process_model(model_id, q_method, latest, maintainer, oauth_token: gr.OAuthToken | None):
|
28 |
-
#def process_model(model_id, q_method, latest):
|
29 |
if oauth_token.token is None:
|
30 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
31 |
model_name = model_id.split('/')[-1]
|
32 |
-
|
33 |
-
ollama_model_name = model_maintainer.lower() + '_' + model_name.lower()
|
34 |
-
|
35 |
|
36 |
try:
|
37 |
api = HfApi(token=oauth_token.token)
|
@@ -57,51 +52,65 @@ def process_model(model_id, q_method, latest, maintainer, oauth_token: gr.OAuthT
|
|
57 |
print(f"Current working directory: {os.getcwd()}")
|
58 |
print(f"Model directory contents: {os.listdir(model_name)}")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
print(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
|
106 |
|
107 |
except Exception as e:
|
@@ -116,10 +125,10 @@ css="""/* Custom CSS to allow scrolling */
|
|
116 |
"""
|
117 |
# Create Gradio interface
|
118 |
with gr.Blocks(css=css) as demo:
|
|
|
119 |
gr.Markdown("You must be logged in to use Ollamafy.")
|
120 |
gr.Markdown(ollama_pubkey.read().rstrip())
|
121 |
ollama_pubkey.close()
|
122 |
-
gr.LoginButton(min_width=250)
|
123 |
|
124 |
model_id = HuggingfaceHubSearch(
|
125 |
label="Hub Model ID",
|
@@ -127,29 +136,32 @@ with gr.Blocks(css=css) as demo:
|
|
127 |
search_type="model",
|
128 |
)
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
134 |
value="FP16",
|
135 |
filterable=False,
|
136 |
-
visible=
|
137 |
)
|
138 |
latest = gr.Checkbox(
|
139 |
value=False,
|
140 |
label="Latest",
|
141 |
info="Copy Model to Ollama Library with the :latest tag"
|
142 |
)
|
|
|
143 |
maintainer = gr.Checkbox(
|
144 |
value=False,
|
145 |
label="Maintainer",
|
146 |
info="This is your original repository on both Hugging Face and Ollama. (DO NOT USE!!!)"
|
147 |
)
|
|
|
148 |
iface = gr.Interface(
|
149 |
fn=process_model,
|
150 |
inputs=[
|
151 |
model_id,
|
152 |
-
|
153 |
latest,
|
154 |
maintainer
|
155 |
],
|
|
|
18 |
|
19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME").lower()
|
21 |
+
ollama_pubkey = open("/home/user/.ollama/id_ed25519.pub", "r")
|
22 |
+
ollama_q_methods = ["FP16","Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"]
|
23 |
|
24 |
|
25 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, ollamafy, latest, maintainer, oauth_token: gr.OAuthToken | None):
|
|
|
|
|
|
|
26 |
if oauth_token.token is None:
|
27 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
28 |
model_name = model_id.split('/')[-1]
|
29 |
+
fp16 = f"{model_name}.fp16.gguf"
|
|
|
|
|
30 |
|
31 |
try:
|
32 |
api = HfApi(token=oauth_token.token)
|
|
|
52 |
print(f"Current working directory: {os.getcwd()}")
|
53 |
print(f"Model directory contents: {os.listdir(model_name)}")
|
54 |
|
55 |
+
conversion_script = "convert_hf_to_gguf.py"
|
56 |
+
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
57 |
+
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
58 |
+
print(result)
|
59 |
+
if result.returncode != 0:
|
60 |
+
raise Exception(f"Error converting to fp16: {result.stderr}")
|
61 |
+
print("Model converted to fp16 successfully!")
|
62 |
+
print(f"Converted model path: {fp16}")
|
63 |
+
|
64 |
+
### Ollamafy ###
|
65 |
+
if ollama_model:
|
66 |
+
model_maintainer = model_id.split('/')[-2]
|
67 |
+
ollama_model_name = model_maintainer.lower() + '_' + model_name.lower()
|
68 |
+
ollama_modelfile_name = model_name + '_modelfile'
|
69 |
+
# model_path = f"{HOME}/.cache/huggingface/hub/{model_id}"
|
70 |
+
|
71 |
+
ollama_modelfile = open(ollama_modelfile_name, "w")
|
72 |
+
# ollama_modelfile_path = quantized_gguf_path
|
73 |
+
ollama_modelfile.write(quantized_gguf_path)
|
74 |
+
ollama_modelfile.close()
|
75 |
+
print(quantized_gguf_path)
|
76 |
+
|
77 |
+
for ollama_q_method in ollama_q_methods:
|
78 |
+
if ollama_q_method == "FP16":
|
79 |
+
ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
|
80 |
+
else:
|
81 |
+
ollama_conversion = f"ollama create -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
|
82 |
+
ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True)
|
83 |
+
print(ollama_conversion_result)
|
84 |
+
if ollama_conversion_result.returncode != 0:
|
85 |
+
raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}")
|
86 |
+
print("Model converted to Ollama successfully!")
|
87 |
+
|
88 |
+
if maintainer:
|
89 |
+
ollama_push = f"ollama push {OLLAMA_USERNAME}/{model_name}:{q_method.lower()}"
|
90 |
+
else:
|
91 |
+
ollama_push = f"ollama push {OLLAMA_USERNAME}/{ollama_model_name}:{q_method.lower()}"
|
92 |
+
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
|
93 |
+
print(ollama_push_result)
|
94 |
+
if ollama_push_result.returncode != 0:
|
95 |
+
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
|
96 |
+
print("Model pushed to Ollama library successfully!")
|
97 |
|
98 |
+
if latest == True:
|
99 |
+
ollama_copy = f"ollama cp {OLLAMA_USERNAME}/{model_id.lower()}:{q_method.lower()} {OLLAMA_USERNAME}/{model_id.lower()}:latest"
|
100 |
+
ollama_copy_result = subprocess.run(ollama_copy, shell=True, capture_output=True)
|
101 |
+
print(ollama_copy_result)
|
102 |
+
if ollama_copy_result.returncode != 0:
|
103 |
+
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
|
104 |
+
print("Model pushed to Ollama library successfully!")
|
105 |
+
if maintainer == True:
|
106 |
+
llama_push_latest = f"ollama push {OLLAMA_USERNAME}/{model_name}:latest"
|
107 |
+
else:
|
108 |
+
ollama_push_latest = f"ollama push {OLLAMA_USERNAME}/{ollama_model_name}:latest"
|
109 |
+
ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True)
|
110 |
+
print(ollama_push_latest_result)
|
111 |
+
if ollama_push_latest_result.returncode != 0:
|
112 |
+
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
|
113 |
+
print("Model pushed to Ollama library successfully!")
|
114 |
|
115 |
|
116 |
except Exception as e:
|
|
|
125 |
"""
|
126 |
# Create Gradio interface
|
127 |
with gr.Blocks(css=css) as demo:
|
128 |
+
gr.LoginButton(min_width=250)
|
129 |
gr.Markdown("You must be logged in to use Ollamafy.")
|
130 |
gr.Markdown(ollama_pubkey.read().rstrip())
|
131 |
ollama_pubkey.close()
|
|
|
132 |
|
133 |
model_id = HuggingfaceHubSearch(
|
134 |
label="Hub Model ID",
|
|
|
136 |
search_type="model",
|
137 |
)
|
138 |
|
139 |
+
ollama_q_method
|
140 |
+
latest = gr.Dropdown(
|
141 |
+
ollama_q_methods,
|
142 |
+
label="Ollama Lastest Quantization Method",
|
143 |
+
info="Chose which quantization will be labled with the latest tag in the Ollama Library",
|
144 |
value="FP16",
|
145 |
filterable=False,
|
146 |
+
visible=False
|
147 |
)
|
148 |
latest = gr.Checkbox(
|
149 |
value=False,
|
150 |
label="Latest",
|
151 |
info="Copy Model to Ollama Library with the :latest tag"
|
152 |
)
|
153 |
+
|
154 |
maintainer = gr.Checkbox(
|
155 |
value=False,
|
156 |
label="Maintainer",
|
157 |
info="This is your original repository on both Hugging Face and Ollama. (DO NOT USE!!!)"
|
158 |
)
|
159 |
+
|
160 |
iface = gr.Interface(
|
161 |
fn=process_model,
|
162 |
inputs=[
|
163 |
model_id,
|
164 |
+
ollama_q_method,
|
165 |
latest,
|
166 |
maintainer
|
167 |
],
|