DockFormer / dockformer /utils /geometry /rotation_matrix.py
bshor's picture
add code
bca3a49
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Rot3Array Matrix Class."""
from __future__ import annotations
import dataclasses
from typing import List
import torch
from dockformer.utils.geometry import utils
from dockformer.utils.geometry import vector
from dockformer.utils.tensor_utils import tensor_tree_map
COMPONENTS = ['xx', 'xy', 'xz', 'yx', 'yy', 'yz', 'zx', 'zy', 'zz']
@dataclasses.dataclass(frozen=True)
class Rot3Array:
"""Rot3Array Matrix in 3 dimensional Space implemented as struct of arrays."""
xx: torch.Tensor = dataclasses.field(metadata={'dtype': torch.float32})
xy: torch.Tensor
xz: torch.Tensor
yx: torch.Tensor
yy: torch.Tensor
yz: torch.Tensor
zx: torch.Tensor
zy: torch.Tensor
zz: torch.Tensor
__array_ufunc__ = None
def __getitem__(self, index):
field_names = utils.get_field_names(Rot3Array)
return Rot3Array(
**{
name: getattr(self, name)[index]
for name in field_names
}
)
def __mul__(self, other: torch.Tensor):
field_names = utils.get_field_names(Rot3Array)
return Rot3Array(
**{
name: getattr(self, name) * other
for name in field_names
}
)
def __matmul__(self, other: Rot3Array) -> Rot3Array:
"""Composes two Rot3Arrays."""
c0 = self.apply_to_point(vector.Vec3Array(other.xx, other.yx, other.zx))
c1 = self.apply_to_point(vector.Vec3Array(other.xy, other.yy, other.zy))
c2 = self.apply_to_point(vector.Vec3Array(other.xz, other.yz, other.zz))
return Rot3Array(c0.x, c1.x, c2.x, c0.y, c1.y, c2.y, c0.z, c1.z, c2.z)
def map_tensor_fn(self, fn) -> Rot3Array:
field_names = utils.get_field_names(Rot3Array)
return Rot3Array(
**{
name: fn(getattr(self, name))
for name in field_names
}
)
def inverse(self) -> Rot3Array:
"""Returns inverse of Rot3Array."""
return Rot3Array(
self.xx, self.yx, self.zx,
self.xy, self.yy, self.zy,
self.xz, self.yz, self.zz
)
def apply_to_point(self, point: vector.Vec3Array) -> vector.Vec3Array:
"""Applies Rot3Array to point."""
return vector.Vec3Array(
self.xx * point.x + self.xy * point.y + self.xz * point.z,
self.yx * point.x + self.yy * point.y + self.yz * point.z,
self.zx * point.x + self.zy * point.y + self.zz * point.z
)
def apply_inverse_to_point(self, point: vector.Vec3Array) -> vector.Vec3Array:
"""Applies inverse Rot3Array to point."""
return self.inverse().apply_to_point(point)
def unsqueeze(self, dim: int):
return Rot3Array(
*tensor_tree_map(
lambda t: t.unsqueeze(dim),
[getattr(self, c) for c in COMPONENTS]
)
)
def stop_gradient(self) -> Rot3Array:
return Rot3Array(
*[getattr(self, c).detach() for c in COMPONENTS]
)
@classmethod
def identity(cls, shape, device) -> Rot3Array:
"""Returns identity of given shape."""
ones = torch.ones(shape, dtype=torch.float32, device=device)
zeros = torch.zeros(shape, dtype=torch.float32, device=device)
return cls(ones, zeros, zeros, zeros, ones, zeros, zeros, zeros, ones)
@classmethod
def from_two_vectors(
cls, e0: vector.Vec3Array,
e1: vector.Vec3Array
) -> Rot3Array:
"""Construct Rot3Array from two Vectors.
Rot3Array is constructed such that in the corresponding frame 'e0' lies on
the positive x-Axis and 'e1' lies in the xy plane with positive sign of y.
Args:
e0: Vector
e1: Vector
Returns:
Rot3Array
"""
# Normalize the unit vector for the x-axis, e0.
e0 = e0.normalized()
# make e1 perpendicular to e0.
c = e1.dot(e0)
e1 = (e1 - c * e0).normalized()
# Compute e2 as cross product of e0 and e1.
e2 = e0.cross(e1)
return cls(e0.x, e1.x, e2.x, e0.y, e1.y, e2.y, e0.z, e1.z, e2.z)
@classmethod
def from_array(cls, array: torch.Tensor) -> Rot3Array:
"""Construct Rot3Array Matrix from array of shape. [..., 3, 3]."""
rows = torch.unbind(array, dim=-2)
rc = [torch.unbind(e, dim=-1) for e in rows]
return cls(*[e for row in rc for e in row])
def to_tensor(self) -> torch.Tensor:
"""Convert Rot3Array to array of shape [..., 3, 3]."""
return torch.stack(
[
torch.stack([self.xx, self.xy, self.xz], dim=-1),
torch.stack([self.yx, self.yy, self.yz], dim=-1),
torch.stack([self.zx, self.zy, self.zz], dim=-1)
],
dim=-2
)
@classmethod
def from_quaternion(cls,
w: torch.Tensor,
x: torch.Tensor,
y: torch.Tensor,
z: torch.Tensor,
normalize: bool = True,
eps: float = 1e-6
) -> Rot3Array:
"""Construct Rot3Array from components of quaternion."""
if normalize:
inv_norm = torch.rsqrt(torch.clamp(w**2 + x**2 + y**2 + z**2, min=eps))
w = w * inv_norm
x = x * inv_norm
y = y * inv_norm
z = z * inv_norm
xx = 1.0 - 2.0 * (y ** 2 + z ** 2)
xy = 2.0 * (x * y - w * z)
xz = 2.0 * (x * z + w * y)
yx = 2.0 * (x * y + w * z)
yy = 1.0 - 2.0 * (x ** 2 + z ** 2)
yz = 2.0 * (y * z - w * x)
zx = 2.0 * (x * z - w * y)
zy = 2.0 * (y * z + w * x)
zz = 1.0 - 2.0 * (x ** 2 + y ** 2)
return cls(xx, xy, xz, yx, yy, yz, zx, zy, zz)
def reshape(self, new_shape):
field_names = utils.get_field_names(Rot3Array)
reshape_fn = lambda t: t.reshape(new_shape)
return Rot3Array(
**{
name: reshape_fn(getattr(self, name))
for name in field_names
}
)
@classmethod
def cat(cls, rots: List[Rot3Array], dim: int) -> Rot3Array:
field_names = utils.get_field_names(Rot3Array)
cat_fn = lambda l: torch.cat(l, dim=dim)
return cls(
**{
name: cat_fn([getattr(r, name) for r in rots])
for name in field_names
}
)