Spaces:
Sleeping
Sleeping
File size: 7,060 Bytes
bca3a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Rot3Array Matrix Class."""
from __future__ import annotations
import dataclasses
from typing import List
import torch
from dockformer.utils.geometry import utils
from dockformer.utils.geometry import vector
from dockformer.utils.tensor_utils import tensor_tree_map
COMPONENTS = ['xx', 'xy', 'xz', 'yx', 'yy', 'yz', 'zx', 'zy', 'zz']
@dataclasses.dataclass(frozen=True)
class Rot3Array:
"""Rot3Array Matrix in 3 dimensional Space implemented as struct of arrays."""
xx: torch.Tensor = dataclasses.field(metadata={'dtype': torch.float32})
xy: torch.Tensor
xz: torch.Tensor
yx: torch.Tensor
yy: torch.Tensor
yz: torch.Tensor
zx: torch.Tensor
zy: torch.Tensor
zz: torch.Tensor
__array_ufunc__ = None
def __getitem__(self, index):
field_names = utils.get_field_names(Rot3Array)
return Rot3Array(
**{
name: getattr(self, name)[index]
for name in field_names
}
)
def __mul__(self, other: torch.Tensor):
field_names = utils.get_field_names(Rot3Array)
return Rot3Array(
**{
name: getattr(self, name) * other
for name in field_names
}
)
def __matmul__(self, other: Rot3Array) -> Rot3Array:
"""Composes two Rot3Arrays."""
c0 = self.apply_to_point(vector.Vec3Array(other.xx, other.yx, other.zx))
c1 = self.apply_to_point(vector.Vec3Array(other.xy, other.yy, other.zy))
c2 = self.apply_to_point(vector.Vec3Array(other.xz, other.yz, other.zz))
return Rot3Array(c0.x, c1.x, c2.x, c0.y, c1.y, c2.y, c0.z, c1.z, c2.z)
def map_tensor_fn(self, fn) -> Rot3Array:
field_names = utils.get_field_names(Rot3Array)
return Rot3Array(
**{
name: fn(getattr(self, name))
for name in field_names
}
)
def inverse(self) -> Rot3Array:
"""Returns inverse of Rot3Array."""
return Rot3Array(
self.xx, self.yx, self.zx,
self.xy, self.yy, self.zy,
self.xz, self.yz, self.zz
)
def apply_to_point(self, point: vector.Vec3Array) -> vector.Vec3Array:
"""Applies Rot3Array to point."""
return vector.Vec3Array(
self.xx * point.x + self.xy * point.y + self.xz * point.z,
self.yx * point.x + self.yy * point.y + self.yz * point.z,
self.zx * point.x + self.zy * point.y + self.zz * point.z
)
def apply_inverse_to_point(self, point: vector.Vec3Array) -> vector.Vec3Array:
"""Applies inverse Rot3Array to point."""
return self.inverse().apply_to_point(point)
def unsqueeze(self, dim: int):
return Rot3Array(
*tensor_tree_map(
lambda t: t.unsqueeze(dim),
[getattr(self, c) for c in COMPONENTS]
)
)
def stop_gradient(self) -> Rot3Array:
return Rot3Array(
*[getattr(self, c).detach() for c in COMPONENTS]
)
@classmethod
def identity(cls, shape, device) -> Rot3Array:
"""Returns identity of given shape."""
ones = torch.ones(shape, dtype=torch.float32, device=device)
zeros = torch.zeros(shape, dtype=torch.float32, device=device)
return cls(ones, zeros, zeros, zeros, ones, zeros, zeros, zeros, ones)
@classmethod
def from_two_vectors(
cls, e0: vector.Vec3Array,
e1: vector.Vec3Array
) -> Rot3Array:
"""Construct Rot3Array from two Vectors.
Rot3Array is constructed such that in the corresponding frame 'e0' lies on
the positive x-Axis and 'e1' lies in the xy plane with positive sign of y.
Args:
e0: Vector
e1: Vector
Returns:
Rot3Array
"""
# Normalize the unit vector for the x-axis, e0.
e0 = e0.normalized()
# make e1 perpendicular to e0.
c = e1.dot(e0)
e1 = (e1 - c * e0).normalized()
# Compute e2 as cross product of e0 and e1.
e2 = e0.cross(e1)
return cls(e0.x, e1.x, e2.x, e0.y, e1.y, e2.y, e0.z, e1.z, e2.z)
@classmethod
def from_array(cls, array: torch.Tensor) -> Rot3Array:
"""Construct Rot3Array Matrix from array of shape. [..., 3, 3]."""
rows = torch.unbind(array, dim=-2)
rc = [torch.unbind(e, dim=-1) for e in rows]
return cls(*[e for row in rc for e in row])
def to_tensor(self) -> torch.Tensor:
"""Convert Rot3Array to array of shape [..., 3, 3]."""
return torch.stack(
[
torch.stack([self.xx, self.xy, self.xz], dim=-1),
torch.stack([self.yx, self.yy, self.yz], dim=-1),
torch.stack([self.zx, self.zy, self.zz], dim=-1)
],
dim=-2
)
@classmethod
def from_quaternion(cls,
w: torch.Tensor,
x: torch.Tensor,
y: torch.Tensor,
z: torch.Tensor,
normalize: bool = True,
eps: float = 1e-6
) -> Rot3Array:
"""Construct Rot3Array from components of quaternion."""
if normalize:
inv_norm = torch.rsqrt(torch.clamp(w**2 + x**2 + y**2 + z**2, min=eps))
w = w * inv_norm
x = x * inv_norm
y = y * inv_norm
z = z * inv_norm
xx = 1.0 - 2.0 * (y ** 2 + z ** 2)
xy = 2.0 * (x * y - w * z)
xz = 2.0 * (x * z + w * y)
yx = 2.0 * (x * y + w * z)
yy = 1.0 - 2.0 * (x ** 2 + z ** 2)
yz = 2.0 * (y * z - w * x)
zx = 2.0 * (x * z - w * y)
zy = 2.0 * (y * z + w * x)
zz = 1.0 - 2.0 * (x ** 2 + y ** 2)
return cls(xx, xy, xz, yx, yy, yz, zx, zy, zz)
def reshape(self, new_shape):
field_names = utils.get_field_names(Rot3Array)
reshape_fn = lambda t: t.reshape(new_shape)
return Rot3Array(
**{
name: reshape_fn(getattr(self, name))
for name in field_names
}
)
@classmethod
def cat(cls, rots: List[Rot3Array], dim: int) -> Rot3Array:
field_names = utils.get_field_names(Rot3Array)
cat_fn = lambda l: torch.cat(l, dim=dim)
return cls(
**{
name: cat_fn([getattr(r, name) for r in rots])
for name in field_names
}
)
|