Spaces:
Sleeping
Sleeping
File size: 1,209 Bytes
7091ee2 0bbc490 f33aefe 045d91e e6c644a f33aefe e6c644a f33aefe 7091ee2 f33aefe 7091ee2 507ba49 0bbc490 7091ee2 0bbc490 7091ee2 5119f6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from diffusers import DiffusionPipeline
def generate_image(modelsyu, prompt, negative_prompt):
pipeline = DiffusionPipeline.from_pretrained(modelsyu)
pipeline.to("cpu")
# Attempt to generate an image with the negative prompt if supported
try:
image = pipeline(prompt, negative_prompt=negative_prompt).images[0]
except TypeError:
# Fallback if negative_prompt is not supported
image = pipeline(prompt).images[0]
return image
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Image Generation Custom Models Demo")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here")
submit_button = gr.Button("Generate Image")
with gr.Accordion('Load your custom models first'):
basem = gr.Textbox(label="Your Lora model", value="John6666/pony-diffusion-v6-xl-sdxl-spo")
output_image = gr.Image(label="Generated Image")
submit_button.click(generate_image, inputs=[basem, prompt, negative_prompt], outputs=output_image)
# Launch the demo
demo.launch(queue=False)
|