Hev832 commited on
Commit
507ba49
·
verified ·
1 Parent(s): 522a777

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -1,14 +1,20 @@
1
  import gradio as gr
2
  from diffusers import DiffusionPipeline
3
 
4
- # Load the pipeline and LoRA weights
 
5
 
 
6
  def load_cust(base_model, models_sec):
 
7
  pipeline = DiffusionPipeline.from_pretrained(base_model)
8
  pipeline.load_lora_weights(models_sec)
9
 
10
  def generate_image(prompt, negative_prompt):
 
11
  # Generate the image with the provided prompts
 
 
12
  image = pipeline(prompt, negative_prompt=negative_prompt).images[0]
13
  return image
14
 
@@ -18,10 +24,10 @@ with gr.Blocks() as demo:
18
  prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
19
  negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here")
20
  submit_button = gr.Button("Generate Image")
21
- with gr.Accordion('load your custom models first'):
22
- basem = gr.Textbox(label="your models adapter")
23
- secondm = gr.Textbox(label="your main models")
24
- exports = gr.Button("load your models")
25
  exports.click(load_cust, inputs=[basem, secondm], outputs=[])
26
  output_image = gr.Image(label="Generated Image")
27
  submit_button.click(generate_image, inputs=[prompt, negative_prompt], outputs=output_image)
 
1
  import gradio as gr
2
  from diffusers import DiffusionPipeline
3
 
4
+ # Initialize the pipeline variable globally
5
+ pipeline = None
6
 
7
+ # Load the pipeline and LoRA weights
8
  def load_cust(base_model, models_sec):
9
+ global pipeline
10
  pipeline = DiffusionPipeline.from_pretrained(base_model)
11
  pipeline.load_lora_weights(models_sec)
12
 
13
  def generate_image(prompt, negative_prompt):
14
+ global pipeline
15
  # Generate the image with the provided prompts
16
+ if pipeline is None:
17
+ return "Pipeline not loaded. Please load the models first."
18
  image = pipeline(prompt, negative_prompt=negative_prompt).images[0]
19
  return image
20
 
 
24
  prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
25
  negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here")
26
  submit_button = gr.Button("Generate Image")
27
+ with gr.Accordion('Load your custom models first'):
28
+ basem = gr.Textbox(label="Your base model", value='John6666/pony-diffusion-v6-xl-sdxl-spo')
29
+ secondm = gr.Textbox(label="Your LoRA model", value='Blane187/miyako-saitou-s1-ponyxl-lora-nochekaiser')
30
+ exports = gr.Button("Load your models")
31
  exports.click(load_cust, inputs=[basem, secondm], outputs=[])
32
  output_image = gr.Image(label="Generated Image")
33
  submit_button.click(generate_image, inputs=[prompt, negative_prompt], outputs=output_image)