BeagSake-7B

BeagSake-7B is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: shadowml/BeagleSempra-7B
        layer_range: [0, 32]
      - model: shadowml/WestBeagle-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: shadowml/BeagleSempra-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "shadowml/BeagSake-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.38
AI2 Reasoning Challenge (25-Shot) 72.44
HellaSwag (10-Shot) 88.39
MMLU (5-Shot) 65.23
TruthfulQA (0-shot) 72.27
Winogrande (5-shot) 82.16
GSM8k (5-shot) 71.80
Downloads last month
11,804
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for shadowml/BeagSake-7B

Merge model
this model
Merges
3 models
Quantizations
3 models

Space using shadowml/BeagSake-7B 1

Evaluation results