sercetexam9's picture
Training completed!
ecfbc56 verified
metadata
library_name: transformers
license: mit
base_model: Davlan/afro-xlmr-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: afro-xlmr-base-tat-MICRO
    results: []

afro-xlmr-base-tat-MICRO

This model is a fine-tuned version of Davlan/afro-xlmr-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3352
  • F1: 0.7041
  • Roc Auc: 0.8304
  • Accuracy: 0.6909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.2295 1.0 345 0.2586 0.5653 0.7200 0.5818
0.174 2.0 690 0.2525 0.6211 0.7728 0.6295
0.1379 3.0 1035 0.2428 0.6566 0.7980 0.6477
0.0958 4.0 1380 0.2517 0.6689 0.7849 0.6636
0.0594 5.0 1725 0.2693 0.6667 0.8033 0.65
0.0605 6.0 2070 0.3010 0.6637 0.8047 0.6545
0.0325 7.0 2415 0.3619 0.6569 0.8053 0.6545
0.0141 8.0 2760 0.3174 0.6944 0.8326 0.6727
0.03 9.0 3105 0.3352 0.7041 0.8304 0.6909
0.0101 10.0 3450 0.3533 0.6766 0.8117 0.6682
0.0054 11.0 3795 0.3688 0.6950 0.8274 0.6795
0.007 12.0 4140 0.3798 0.6983 0.8345 0.675
0.0075 13.0 4485 0.4220 0.6791 0.8228 0.6614

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0