samayl24's picture
End of training
6e4f11b verified
metadata
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnext-tiny-224-driverbox
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9879688605803255

convnext-tiny-224-driverbox

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0497
  • Accuracy: 0.9880

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3349 0.9950 99 0.2700 0.9328
0.2393 2.0 199 0.1932 0.9540
0.1831 2.9950 298 0.1403 0.9618
0.1397 4.0 398 0.1055 0.9689
0.0795 4.9950 497 0.1030 0.9731
0.0915 6.0 597 0.0966 0.9703
0.0718 6.9950 696 0.0779 0.9745
0.0502 8.0 796 0.0729 0.9788
0.0314 8.9950 895 0.0621 0.9802
0.0408 10.0 995 0.0758 0.9752
0.0335 10.9950 1094 0.0598 0.9823
0.0228 12.0 1194 0.0573 0.9823
0.0229 12.9950 1293 0.0473 0.9844
0.0119 14.0 1393 0.0642 0.9844
0.028 14.9950 1492 0.0526 0.9851
0.0117 16.0 1592 0.0594 0.9837
0.0187 16.9950 1691 0.0497 0.9880
0.0131 18.0 1791 0.0663 0.9837
0.0132 18.9950 1890 0.0478 0.9866
0.014 20.0 1990 0.0465 0.9880
0.0039 20.9950 2089 0.0496 0.9851
0.0102 22.0 2189 0.0468 0.9880
0.0035 22.9950 2288 0.0581 0.9866
0.0071 24.0 2388 0.0519 0.9866
0.0032 24.9950 2487 0.0510 0.9880
0.0049 26.0 2587 0.0575 0.9858
0.0037 26.9950 2686 0.0511 0.9880
0.0029 28.0 2786 0.0484 0.9880
0.0019 28.9950 2885 0.0523 0.9866
0.0058 29.8492 2970 0.0532 0.9866

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1