|
--- |
|
license: mit |
|
datasets: |
|
- remyxai/vqasynth_spacellava |
|
tags: |
|
- remyx |
|
- multitask |
|
base_model: |
|
- microsoft/Florence-2-base-ft |
|
--- |
|
|
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1or4muggFnUnZJ50tkCYCla7b9no9HogN?usp=sharing) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/eGBP2Selg2xAruycvTVI1.png) |
|
|
|
# Model Card for SpaceFlorence-2 |
|
|
|
**SpaceFlorence-2** does a full finetune of the BERT component of [Florence-2](https://github.com/haotian-liu/LLaVA/tree/main) with a [dataset](https://huggingface.co/datasets/remyxai/vqasynth_spacellava) designed with [VQASynth](https://github.com/remyxai/VQASynth/tree/main) to enhance spatial reasoning as in [SpatialVLM](https://spatial-vlm.github.io/) |
|
|
|
## Model Details |
|
|
|
- **Developed by:** remyx.ai |
|
- **Model type:** MultiModal Model, Vision Language Model, Florence-2 |
|
- **Finetuned from model:** Florence-2 |
|
|
|
### Model Sources |
|
- **Dataset:** [SpaceLLaVA](https://huggingface.co/datasets/remyxai/vqasynth_spacellava) |
|
- **Repository:** [VQASynth](https://github.com/remyxai/VQASynth/tree/main) |
|
- **Paper:** [SpatialVLM](https://arxiv.org/abs/2401.12168) |
|
|
|
# Running SpaceFlorence-2 |
|
```python |
|
import requests |
|
|
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model = AutoModelForCausalLM.from_pretrained("remyxai/SpaceFlorence-2", trust_remote_code=True).to(device) |
|
processor = AutoProcessor.from_pretrained("remyxai/SpaceFlorence-2", trust_remote_code=True) |
|
|
|
prompt = "<SpatialVQA> How far between the person and the pallet of boxes?" |
|
|
|
url = "https://remyx.ai/assets/spatialvlm/warehouse_rgb.jpg?download=true" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) |
|
|
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
num_beams=3, |
|
do_sample=False |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
|
|
parsed_answer = processor.post_process_generation(generated_text, task="<SpatialVQA>", image_size=(image.width, image.height)) |
|
|
|
print(parsed_answer) |
|
``` |
|
|
|
## Citation |
|
``` |
|
@article{chen2024spatialvlm, |
|
title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities}, |
|
author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei}, |
|
journal = {arXiv preprint arXiv:2401.12168}, |
|
year = {2024}, |
|
url = {https://arxiv.org/abs/2401.12168}, |
|
} |
|
|
|
@article{xiao2023florence, |
|
title={Florence-2: Advancing a unified representation for a variety of vision tasks}, |
|
author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu}, |
|
journal={arXiv preprint arXiv:2311.06242}, |
|
year={2023} |
|
} |
|
``` |