Safetensors
florence2
remyx
multitask
custom_code
SpaceFlorence-2 / README.md
salma-remyx's picture
Update README.md
26b089f verified
---
license: mit
datasets:
- remyxai/vqasynth_spacellava
tags:
- remyx
- multitask
base_model:
- microsoft/Florence-2-base-ft
---
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1or4muggFnUnZJ50tkCYCla7b9no9HogN?usp=sharing)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/eGBP2Selg2xAruycvTVI1.png)
# Model Card for SpaceFlorence-2
**SpaceFlorence-2** does a full finetune of the BERT component of [Florence-2](https://github.com/haotian-liu/LLaVA/tree/main) with a [dataset](https://huggingface.co/datasets/remyxai/vqasynth_spacellava) designed with [VQASynth](https://github.com/remyxai/VQASynth/tree/main) to enhance spatial reasoning as in [SpatialVLM](https://spatial-vlm.github.io/)
## Model Details
- **Developed by:** remyx.ai
- **Model type:** MultiModal Model, Vision Language Model, Florence-2
- **Finetuned from model:** Florence-2
### Model Sources
- **Dataset:** [SpaceLLaVA](https://huggingface.co/datasets/remyxai/vqasynth_spacellava)
- **Repository:** [VQASynth](https://github.com/remyxai/VQASynth/tree/main)
- **Paper:** [SpatialVLM](https://arxiv.org/abs/2401.12168)
# Running SpaceFlorence-2
```python
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForCausalLM.from_pretrained("remyxai/SpaceFlorence-2", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("remyxai/SpaceFlorence-2", trust_remote_code=True)
prompt = "<SpatialVQA> How far between the person and the pallet of boxes?"
url = "https://remyx.ai/assets/spatialvlm/warehouse_rgb.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task="<SpatialVQA>", image_size=(image.width, image.height))
print(parsed_answer)
```
## Citation
```
@article{chen2024spatialvlm,
title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities},
author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei},
journal = {arXiv preprint arXiv:2401.12168},
year = {2024},
url = {https://arxiv.org/abs/2401.12168},
}
@article{xiao2023florence,
title={Florence-2: Advancing a unified representation for a variety of vision tasks},
author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
journal={arXiv preprint arXiv:2311.06242},
year={2023}
}
```