BERT IMDb Sentiment Analysis Model
This repository contains a fine-tuned BERT model for sentiment analysis on IMDb movie reviews. The model classifies text as either Positive or Negative sentiment.
Model Details
- Base Model:
bert-base-uncased
- Dataset: IMDb Movie Reviews
- Task: Sentiment Analysis (Binary Classification)
- Fine-tuned on: IMDb dataset
- Labels:
0
: Negative1
: Positive
Usage
Load the Model using transformers
from transformers import BertTokenizer, BertForSequenceClassification
import torch
model_name = "philipobiorah/bert-imdb-model"
# Load tokenizer and model
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained(model_name)
# Define function for sentiment prediction
def predict_sentiment(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
return "Positive" if logits.argmax().item() == 1 else "Negative"
# Test the model
print(predict_sentiment("This movie was absolutely fantastic!"))
print(predict_sentiment("I really disliked this movie, it was terrible."))
- Downloads last month
- 74
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for philipobiorah/bert-imdb-model
Base model
google-bert/bert-base-uncased