Hugging Face H4 Community

community

AI & ML interests

None defined yet.

Recent Activity

h4-community's activity

lewtun 
posted an update 1 day ago
view post
Post
2177
Introducing OpenR1-Math-220k!

open-r1/OpenR1-Math-220k

The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch 💪

What’s new compared to existing reasoning datasets?

♾ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.

🐳 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.

📀 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.

⏳ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that can’t be verified with a rules-based parser)

📊 We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.

🔎 Read our blog post for all the nitty gritty details: https://huggingface.co/blog/open-r1/update-2
lewtun 
posted an update 17 days ago
view post
Post
10040
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!

🧪 Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.

🧠 Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.

🔥 Step 3: show we can go from base model -> SFT -> RL via multi-stage training.

Follow along: https://github.com/huggingface/open-r1
·
lewtun 
posted an update about 1 month ago
view post
Post
3831
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!

https://x.com/casper_hansen_/status/1875872309996855343

Together with the recent PRIME method [2] for scaling RL, reasoning for open models is looking pretty exciting for 2025!

[1] Training Large Language Models to Reason in a Continuous Latent Space (2412.06769)
[2] https://huggingface.co/blog/ganqu/prime
lewtun 
posted an update about 1 month ago
view post
Post
2280
This paper ( HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs (2412.18925)) has a really interesting recipe for inducing o1-like behaviour in Llama models:

* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting.
* Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases)
* Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1
* Use the resulting data for SFT & RL
* Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.

Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
  • 1 reply
·
lewtun 
posted an update about 2 months ago
view post
Post
6853
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥

How? By combining step-wise reward models with tree search algorithms :)

We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"

We're open sourcing the full recipe and sharing a detailed blog post.

In our blog post we cover:

📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.

🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.

🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM

Here's the links:

- Blog post: HuggingFaceH4/blogpost-scaling-test-time-compute

- Code: https://github.com/huggingface/search-and-learn

Enjoy!
  • 2 replies
·
thomwolf 
posted an update 2 months ago
view post
Post
5409
We are proud to announce HuggingFaceFW/fineweb-2: A sparkling update to HuggingFaceFW/fineweb with 1000s of 🗣️languages.

We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.

🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.

The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.

We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!

In the mean time come ask us question on our chat place: HuggingFaceFW/discussion

H/t @guipenedo @hynky @lvwerra as well as @vsabolcec Bettina Messmer @negar-foroutan and @mjaggi
  • 2 replies
·
thomwolf 
posted an update 2 months ago
thomwolf 
posted an update 2 months ago
thomwolf 
posted an update 3 months ago
thomwolf 
posted an update 3 months ago
thomwolf 
posted an update 4 months ago
view post
Post
4193
Parents in the 1990: Teach the kids to code
Parents now: Teach the kids to fix the code when it starts walking around 🤖✨
  • 2 replies
·
thomwolf 
posted an update 8 months ago
view post
Post
4585
[New crazy blog post alert] We are releasing an extensive blog post on the science of creating high quality web-scale datasets, detailing all the steps and learnings that came in our recent 15 trillion tokens 🍷FineWeb release

Inspired by the distill.pub interactive graphics papers, we settled to write the most extensive, enjoyable and in-depth tech report we could draft on so prepare for a 45-mmin read with interactive graphics and all.

And it's not all, in this article we also introduce 📚FineWeb-Edu a filtered subset of Common Crawl with 1.3T tokens containing only web pages with very high educational content. Up to our knowledge, FineWeb-Edu out-performs all openly release web-scale datasets by a significant margin on knowledge- and reasoning-intensive benchmarks like MMLU, ARC, and OpenBookQA

We also make a number of surprising observations on the "quality" of the internet it-self which may challenge some of the general assumptions on web data (not saying more, I'll let you draw your conclusions ;)

HuggingFaceFW/blogpost-fineweb-v1
  • 1 reply
·
osanseviero 
posted an update 10 months ago
view post
Post
11884
Diaries of Open Source. Part 15 🤗

🕵️‍♀️Idefics 2 is out, a multimodal open-source model with very nice capabilities
Models, demo, and datasets: HuggingFaceM4/idefics2-661d1971b7c50831dd3ce0fe
Blog: https://hf.co/blog/idefics2

💾Snowflake released snowflake-arctic-embed, a family of powerful small embedding models
Model: Snowflake/snowflake-arctic-embed-m
Blog: https://www.snowflake.com/blog/introducing-snowflake-arctic-embed-snowflakes-state-of-the-art-text-embedding-family-of-models/

✨Pile-T5, EleutherAI's T5 model trained on 2T tokens
Blog: https://blog.eleuther.ai/pile-t5/
Models: EleutherAI/pile-t5-65a76a0d0022dd270b385a66
GitHub: https://github.com/EleutherAI/improved-t5

🤖CodeQwen1.5-7B base and chat models. Models trained on 3T tokens strong benchmark results for code generation, editing and SQL
Blog post: https://qwenlm.github.io/blog/codeqwen1.5/
Demo: Qwen/CodeQwen1.5-7b-Chat-demo
Models: Qwen/CodeQwen1.5-7B and Qwen/CodeQwen1.5-7B-Chat

Misc
🦉 DocOwl1.5: Unified Stucture Learning for OCR-free Document Understanding mPLUG/DocOwl
👀Cerule - a tiny Vision LM model Tensoic/Cerule-v0.1
ChemLLM - a LLM for chemistry and molecule science ⚗️https://hf.co/AI4Chem/ChemLLM-7B-Chat-1.5-DPO
Distil Whisper Large
📝New pdf/OCR datasets with 19 samples pixparse/pdf-document-ocr-datasets-660701430b0346f97c4bc628
🔥Gretel AI high quality text-to-sql synthetic dataset gretelai/synthetic_text_to_sql
·
thomwolf 
posted an update 10 months ago
view post
Post
4895
Is is time for the open-source AI robots revolution 🚀?

With @haixuantao and @Leyo we’ve been playing with a low-cost DJI robot controlled by three local open-source AI models (Whisper, Idefics2, Parler-TTS - all Apache2) and orchestrated by Dora-cs.

Links to find all the hardware/software we used in the demo:
- robot control framework – dora-rs: https://github.com/dora-rs/dora
- speech-to-text model – whisper: openai/whisper-base
- vision-text model – Idefics2: HuggingFaceM4/idefics2-8b-AWQ
- text-to-speech model – ParlerTTS mini: parler-tts/parler_tts_mini_v0.1
- robot: https://dji.com/robomaster-s1
- code gist: https://gist.github.com/haixuanTao/860e1740245dc2c8dd85b496150a9320
- Larger codebase: dora-rs/dora-idefics2
- laptop/pc: any with a recent GPU card (our has a RTX 4090)

Enjoy!
·