Hugging Face Agents Course

Enterprise
university
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

agents-course's activity

burtenshawย 
posted an update about 12 hours ago
view post
Post
1582
The Hugging Face agents course is finally out!

๐Ÿ‘‰ https://huggingface.co/agents-course

This first unit of the course sets you up with all the fundamentals to become a pro in agents.

- What's an AI Agent?
- What are LLMs?
- Messages and Special Tokens
- Understanding AI Agents through the Thought-Action-Observation Cycle
- Thought, Internal Reasoning and the Re-Act Approach
- Actions, Enabling the Agent to Engage with Its Environment
- Observe, Integrating Feedback to Reflect and Adapt
m-ricย 
posted an update 4 days ago
view post
Post
3006
๐—”๐—ฑ๐˜†๐—ฒ๐—ป'๐˜€ ๐—ป๐—ฒ๐˜„ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—•๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ ๐˜€๐—ต๐—ผ๐˜„๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐——๐—ฒ๐—ฒ๐—ฝ๐—ฆ๐—ฒ๐—ฒ๐—ธ-๐—ฅ๐Ÿญ ๐˜€๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ฒ๐˜€ ๐—ผ๐—ป ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐˜๐—ฎ๐˜€๐—ธ๐˜€! โŒ

โžก๏ธ How well do reasoning models perform on agentic tasks? Until now, all indicators seemed to show that they worked really well. On our recent reproduction of Deep Search, OpenAI's o1 was by far the best model to power an agentic system.

So when our partner Adyen built a huge benchmark of 450 data science tasks, and built data agents with smolagents to test different models, I expected reasoning models like o1 or DeepSeek-R1 to destroy the tasks at hand.

๐Ÿ‘Ž But they really missed the mark. DeepSeek-R1 only got 1 or 2 out of 10 questions correct. Similarly, o1 was only at ~13% correct answers.

๐Ÿง These results really surprised us. We thoroughly checked them, we even thought our APIs for DeepSeek were broken and colleagues Leandro Anton helped me start custom instances of R1 on our own H100s to make sure it worked well.
But there seemed to be no mistake. Reasoning LLMs actually did not seem that smart. Often, these models made basic mistakes, like forgetting the content of a folder that they had just explored, misspelling file names, or hallucinating data. Even though they do great at exploring webpages through several steps, the same level of multi-step planning seemed much harder to achieve when reasoning over files and data.

It seems like there's still lots of work to do in the Agents x Data space. Congrats to Adyen for this great benchmark, looking forward to see people proposing better agents! ๐Ÿš€

Read more in the blog post ๐Ÿ‘‰ https://huggingface.co/blog/dabstep
burtenshawย 
posted an update 4 days ago
view post
Post
3031
SmolLM2 paper is out! ๐Ÿ˜Š

๐Ÿ˜ Why do I love it? Because it facilitates teaching and learning!

Over the past few months I've engaged with (no joke) thousands of students based on SmolLM.

- People have inferred, fine-tuned, aligned, and evaluated this smol model.
- People used they're own machines and they've used free tools like colab, kaggle, and spaces.
- People tackled use cases in their job, for fun, in their own language, and with their friends.

upvote the paper SmolLM2: When Smol Goes Big -- Data-Centric Training of a Small Language Model (2502.02737)
  • 1 reply
ยท
m-ricย 
posted an update 7 days ago
view post
Post
9180
Introducing ๐—ผ๐—ฝ๐—ฒ๐—ป ๐——๐—ฒ๐—ฒ๐—ฝ-๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต by Hugging Face! ๐Ÿ’ฅ

OpenAI's latest agentic app Deep Research seems really good... But it's closed, as usual.

โฑ๏ธ So with a team of cracked colleagues, we set ourselves a 24hours deadline to replicate and open-source Deep Research! โฑ๏ธ

โžก๏ธ We built open-Deep-Research, an entirely open agent that can: navigate the web autonomously, scroll and search through pages, download and manipulate files, run calculation on data...

We aimed for the best performance: are the agent's answers really rigorous?

On GAIA benchmark, Deep Research had 67% accuracy on the validation set.
โžก๏ธ open Deep Research is at 55% (powered by o1), it is:
- the best pass@1 solution submitted
- the best open solution ๐Ÿ’ช๐Ÿ’ช

And it's only getting started ! Please jump in, drop PRs, and let's bring it to the top !

Read the blog post ๐Ÿ‘‰ https://huggingface.co/blog/open-deep-research
m-ricย 
posted an update 11 days ago
view post
Post
2911
Now you can launch a code agent directly from your terminal!
โœจ ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š "๐šˆ๐š˜๐šž๐š› ๐š๐šŠ๐šœ๐š”" directly launches a CodeAgent
โ–ถ๏ธ This also works with web agents (replace ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š with ๐š ๐šŽ๐š‹๐šŠ๐š๐šŽ๐š—๐š) thanks to @merve !

๐Ÿ’พ Another treat from smolagents release 1.7.0:
Now agents have a memory mechanism, enabling many possibilities like replaying the last run with ๐šŠ๐š๐šŽ๐š—๐š.๐š›๐šŽ๐š™๐š•๐šŠ๐šข(), thank you @clefourrier !

Check the release notes here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/releases/tag/v1.7.0
not-lainย 
posted an update 13 days ago
m-ricย 
posted an update 14 days ago
view post
Post
3895
๐—ง๐—ต๐—ฒ ๐—›๐˜‚๐—ฏ ๐˜„๐—ฒ๐—น๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ ๐—ฒ๐˜…๐˜๐—ฒ๐—ฟ๐—ป๐—ฎ๐—น ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ๐˜€!

โœ… Hosting our own inference was not enough: now the Hub 4 new inference providers: fal, Replicate, SambaNova Systems, & Together AI.

Check model cards on the Hub: you can now, in 1 click, use inference from various providers (cf video demo)

Their inference can also be used through our Inference API client. There, you can use either your custom provider key, or your HF token, then billing will be handled directly on your HF account, as a way to centralize all expenses.

๐Ÿ’ธ Also, PRO users get 2$ inference credits per month!

Read more in the announcement ๐Ÿ‘‰ https://huggingface.co/blog/inference-providers
  • 1 reply
ยท
burtenshawย 
posted an update 15 days ago
view post
Post
3100
Manic few days in open source AI, with game changing development all over the place. Here's a round up of the resources:

- The science team at @huggingface reproduced and open source the seek r1. https://github.com/huggingface/open-r1
- @qwen released a series of models with 1 million token context! https://qwenlm.github.io/blog/qwen2.5-1m/
- SmolVLM got even smaller with completely new variants at 256m and 500m https://huggingface.co/blog/smolervlm

There's so much you could do with these developments. Especially combining them together into agentic applications or fine-tuning them on your use case.
  • 1 reply
ยท
m-ricย 
posted an update 18 days ago
view post
Post
3109
Today we make the biggest release in smolagents so far: ๐˜„๐—ฒ ๐—ฒ๐—ป๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜ƒ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€, ๐˜„๐—ต๐—ถ๐—ฐ๐—ต ๐—ฎ๐—น๐—น๐—ผ๐˜„๐˜€ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น ๐˜„๐—ฒ๐—ฏ ๐—ฏ๐—ฟ๐—ผ๐˜„๐˜€๐—ถ๐—ป๐—ด ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€! ๐Ÿฅณ

Our agents can now casually open up a web browser, and navigate on it by scrolling, clicking elements on the webpage, going back, just like a user would.

The demo below shows Claude-3.5-Sonnet browsing GitHub for task: "Find how many commits the author of the current top trending repo did over last year."
Hi @mlabonne !

Go try it out, it's the most cracked agentic stuff I've seen in a while ๐Ÿคฏ (well, along with OpenAI's Operator who beat us by one day)

For more detail, read our announcement blog ๐Ÿ‘‰ https://huggingface.co/blog/smolagents-can-see
The code for the web browser example is here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/blob/main/examples/vlm_web_browser.py
ยท
burtenshawย 
posted an update 18 days ago
view post
Post
1258
Hey ๐Ÿ‘‹

I'm helping out on some community research to learn about the AI community. If you want to join in the conversation, head over here where I started a community discussion on the most influential model since BERT.

OSAIResearchCommunity/README#2
burtenshawย 
posted an update 18 days ago
view post
Post
1912
๐Ÿ“ฃ Teachers and Students! Here's a handy quiz app if you're preparing your own study material.

TLDR, It's a quiz that uses a dataset to make questions and save answers

Here's how it works:

- make a dataset of multiple choice questions
- duplicate the space add set the dataset repo
- log in and do the quiz
- submit the questions to create a new dataset

I made this to get ready for the agents course, but I hope it's useful for you projects too!

quiz app burtenshaw/dataset_quiz

dataset with questions burtenshaw/exam_questions

agents course we're working on https://huggingface.co/agents-course
burtenshawย 
posted an update 19 days ago
view post
Post
2507
AI was built on side projects!
burtenshawย 
posted an update 20 days ago
view post
Post
3879
๐Ÿšง Work in Progress! ๐Ÿšง

๐Ÿ‘ทโ€โ™€๏ธ We're working hard on getting the official agents course ready for the 50,000 students that have signed up.

If you want to contribute to the discussion, I started these community posts. Looking forward to hearing from you:

- smolagents unit in the agents course - agents-course/README#7
- LlamaIndex Unit in the agents course - agents-course/README#6
- LangChain and LangGraph unit in the agents course - agents-course/README#5
- Real world use cases in the agents course - agents-course/README#8


not-lainย 
posted an update 25 days ago
view post
Post
1564
we now have more than 2000 public AI models using ModelHubMixin๐Ÿค—
burtenshawย 
posted an update 25 days ago
m-ricย 
posted an update 26 days ago
view post
Post
1340
๐— ๐—ถ๐—ป๐—ถ๐— ๐—ฎ๐˜…'๐˜€ ๐—ป๐—ฒ๐˜„ ๐— ๐—ผ๐—˜ ๐—Ÿ๐—Ÿ๐—  ๐—ฟ๐—ฒ๐—ฎ๐—ฐ๐—ต๐—ฒ๐˜€ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—ฆ๐—ผ๐—ป๐—ป๐—ฒ๐˜ ๐—น๐—ฒ๐˜ƒ๐—ฒ๐—น ๐˜„๐—ถ๐˜๐—ต ๐Ÿฐ๐—  ๐˜๐—ผ๐—ธ๐—ฒ๐—ป๐˜€ ๐—ฐ๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—น๐—ฒ๐—ป๐—ด๐˜๐—ต ๐Ÿ’ฅ

This work from Chinese startup @MiniMax-AI introduces a novel architecture that achieves state-of-the-art performance while handling context windows up to 4 million tokens - roughly 20x longer than current models. The key was combining lightning attention, mixture of experts (MoE), and a careful hybrid approach.

๐—ž๐—ฒ๐˜† ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€:

๐Ÿ—๏ธ MoE with novel hybrid attention:
โ€ฃ Mixture of Experts with 456B total parameters (45.9B activated per token)
โ€ฃ Combines Lightning attention (linear complexity) for most layers and traditional softmax attention every 8 layers

๐Ÿ† Outperforms leading models across benchmarks while offering vastly longer context:
โ€ฃ Competitive with GPT-4/Claude-3.5-Sonnet on most tasks
โ€ฃ Can efficiently handle 4M token contexts (vs 256K for most other LLMs)

๐Ÿ”ฌ Technical innovations enable efficient scaling:
โ€ฃ Novel expert parallel and tensor parallel strategies cut communication overhead in half
โ€ฃ Improved linear attention sequence parallelism, multi-level padding and other optimizations achieve 75% GPU utilization (that's really high, generally utilization is around 50%)

๐ŸŽฏ Thorough training strategy:
โ€ฃ Careful data curation and quality control by using a smaller preliminary version of their LLM as a judge!

Overall, not only is the model impressive, but the technical paper is also really interesting! ๐Ÿ“
It has lots of insights including a great comparison showing how a 2B MoE (24B total) far outperforms a 7B model for the same amount of FLOPs.

Read it in full here ๐Ÿ‘‰ MiniMax-01: Scaling Foundation Models with Lightning Attention (2501.08313)
Model here, allows commercial use <100M monthly users ๐Ÿ‘‰ MiniMaxAI/MiniMax-Text-01