openmixtral-4x7b-merged

openmixtral-4x7b-merged is a merge of the following models:

🧩 Configuration

base_model: mlabonne/Marcoro14-7B-slerp
experts:
  - source_model: openchat/openchat-3.5-1210
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
  - source_model: beowolx/CodeNinja-1.0-OpenChat-7B
    positive_prompts:
    - "code"
    - "python"
    - "javascript"
    - "programming"
    - "algorithm"
  - source_model: maywell/PiVoT-0.1-Starling-LM-RP
    positive_prompts:
    - "storywriting"
    - "write"
    - "scene"
    - "story"
    - "character"
  - source_model: WizardLM/WizardMath-7B-V1.1
    positive_prompts:
    - "reason"
    - "math"
    - "mathematics"
    - "solve"
    - "count"
tokenizer_source: union

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "openmixtral-4x7b-merged"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Why the sky is blue."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.51
AI2 Reasoning Challenge (25-Shot) 69.45
HellaSwag (10-Shot) 86.75
MMLU (5-Shot) 65.29
TruthfulQA (0-shot) 61.33
Winogrande (5-shot) 81.06
GSM8k (5-shot) 71.19
Downloads last month
44
Safetensors
Model size
24.2B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for mychen76/openmixtral-4x7b-merged

Quantizations
1 model

Collection including mychen76/openmixtral-4x7b-merged