Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: DeepMount00/Llama-3-8b-Ita
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 2e12d818bdbff2a0_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2e12d818bdbff2a0_train_data.json
  type:
    field_input: choices
    field_instruction: task
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso04/8508170d-d90e-443e-9db9-3a7d438edcb9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/2e12d818bdbff2a0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8508170d-d90e-443e-9db9-3a7d438edcb9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8508170d-d90e-443e-9db9-3a7d438edcb9
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

8508170d-d90e-443e-9db9-3a7d438edcb9

This model is a fine-tuned version of DeepMount00/Llama-3-8b-Ita on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
2.3596 0.0220 1 2.4417
2.4035 0.1099 5 2.3847
2.3089 0.2198 10 2.0153
1.8587 0.3297 15 1.8179
1.8018 0.4396 20 1.7665
1.664 0.5495 25 1.7361
1.7674 0.6593 30 1.7137
1.6114 0.7692 35 1.7016
1.596 0.8791 40 1.6941
1.7132 0.9890 45 1.6920
1.358 1.0989 50 1.6912

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso04/8508170d-d90e-443e-9db9-3a7d438edcb9

Adapter
(298)
this model