Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM-135M-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 2ca7b289702de1c8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2ca7b289702de1c8_train_data.json
  type:
    field_instruction: full_prompt
    field_output: example
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 256
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: ivangrapher/07d9e9d0-60f3-4b91-87aa-ea6b6346e78c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 40
micro_batch_size: 4
mlflow_experiment_name: /tmp/2ca7b289702de1c8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 1024
strict: true
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 48f7ffc8-f75e-432e-b390-464026ee686b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 48f7ffc8-f75e-432e-b390-464026ee686b
warmup_steps: 20
weight_decay: 0.01
xformers_attention: true

07d9e9d0-60f3-4b91-87aa-ea6b6346e78c

This model is a fine-tuned version of unsloth/SmolLM-135M-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 40

Training results

Training Loss Epoch Step Validation Loss
No log 0.0238 1 nan
0.0 0.1190 5 nan
0.0 0.2381 10 nan
0.0 0.3571 15 nan
0.0 0.4762 20 nan
0.0 0.5952 25 nan
0.0 0.7143 30 nan
0.0 0.8333 35 nan
0.0 0.9524 40 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for ivangrapher/07d9e9d0-60f3-4b91-87aa-ea6b6346e78c