Llama-Krikri-8B-Instruct: An Instruction-tuned Large Language Model for the Greek language

Following the release of Meltemi-7B on the 26th March 2024, we are happy to welcome Krikri to the family of ILSP open Greek LLMs. Krikri is built on top of Llama-3.1-8B, extending its capabilities for Greek through continual pretraining on a large corpus of high-quality and locally relevant Greek texts. We present Llama-Krikri-8B-Instruct, along with the base model, Llama-Krikri-8B-Base.

image/png

Model Information

Base Model

  • Vocabulary extension of the Llama-3.1 tokenizer with Greek tokens
  • 128k context length (approximately 80,000 Greek words)
  • We extend the pretraining of Llama-3.1-8B with added proficiency for the Greek language, by utilizing a large training corpus.
    • This corpus includes 56.7 billion monolingual Greek tokens, constructed from publicly available resources.
    • Additionaly, to mitigate catastrophic forgetting and ensure that the model has bilingual capabilities, we use additional sub-corpora with monolingual English texts (21 billion tokens) and Greek-English parallel data (5.5 billion tokens).
    • The training corpus also contains 7.8 billion math and code tokens.
    • This corpus has been processed, filtered, and deduplicated to ensure data quality and is outlined below:
Sub-corpus # Tokens Percentage
Greek 56.7 B 62.3 %
English 21.0 B 23.1 %
Parallel 5.5 B 6.0 %
Math/Code 7.8 B 8.6 %
Total 91 B 100%

Chosen subsets of the 91 billion corpus were upsampled resulting in a size of 110 billion tokens.

Instruct Model

Llama-Krikri-8B-Instruct is the result of post-training Llama-Kriki-8B-Base and features:

  • Enhanced chat capabilities and instruction-following in both Greek and English.
  • Document translation from Greek to English, French, German, Italian, Portuguese, Spanish and vice versa.
  • Great performance on generation, comprehension, and editing tasks, such as summarization, creative content creation, text modification, entity recognition, sentiment analysis, etc.
  • Domain-specifc expertise for specialized legal, financial, medical, and scientific applications.
  • Retrieval-Augmented Generation (RAG) utilizing multiple documents with 128k context length.
  • Improved coding and agentic capabilities with correct formatting and tool use.
  • Conversion or structured extraction (e.g., XML, JSON) in data-to-text & text-to-data settings.
  • Analytical thinking and Chain-of-Thought (CoT) reasoning for problem-solving.

🚨 More information on the post-training corpus and methdology coming soon. 🚨

How to use

With Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda"

model = AutoModelForCausalLM.from_pretrained("ilsp/Llama-Krikri-8B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("ilsp/Llama-Krikri-8B-Instruct")

model.to(device)

system_prompt = "Είσαι το Κρικρί, ένα εξαιρετικά ανεπτυγμένο μοντέλο Τεχνητής Νοημοσύνης για τα ελληνικα και εκπαιδεύτηκες από το ΙΕΛ του Ε.Κ. \"Αθηνά\"."
user_prompt = "Σε τι διαφέρει ένα κρικρί από ένα λάμα;"

messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": user_prompt},
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_prompt = tokenizer(prompt, return_tensors='pt').to(device)
outputs = model.generate(input_prompt['input_ids'], max_new_tokens=256, do_sample=True)

print(tokenizer.batch_decode(outputs)[0])

With OpenAI compatible server via vLLM

vllm serve ilsp/Llama-Krikri-8B-Instruct \
  --enforce-eager \
  --dtype 'bfloat16' \
  --api-key token-abc123

Then, the model can be used through Python using:

from openai import OpenAI

api_key = "token-abc123"
base_url = "http://localhost:8000/v1"

client = OpenAI(
    api_key=api_key,
    base_url=base_url,
)

system_prompt = "Είσαι ένα ανεπτυγμένο μεταφραστικό σύστημα που απαντάει με λίστες Python. Δεν γράφεις τίποτα άλλο στις απαντήσεις σου πέρα από τις μεταφρασμένες λίστες."
user_prompt = "Δώσε μου την παρακάτω λίστα με μεταφρασμένο κάθε string της στα ελληνικά: ['Ethics of duty', 'Postmodern ethics', 'Consequentialist ethics', 'Utilitarian ethics', 'Deontological ethics', 'Virtue ethics', 'Relativist ethics']"

messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": user_prompt},
]

response = client.chat.completions.create(model="ilsp/Llama-Krikri-8B-Instruct",
                                          messages=messages,
                                          temperature=0.0,
                                          top_p=0.95,
                                          max_tokens=8192,
                                          stream=False)

print(response.choices[0].message.content)
# ['Ηθική καθήκοντος', 'Μεταμοντέρνα ηθική', 'Συνεπειοκρατική ηθική', 'Ωφελιμιστική ηθική', 'Δεοντολογική ηθική', 'Ηθική αρετών', 'Σχετικιστική ηθική']

Evaluation

🚨 Instruction following and chat capability evaluation benchmarks coming soon. 🚨

Acknowledgements

The ILSP team utilized Amazon's cloud computing services, which were made available via GRNET under the OCRE Cloud framework, providing Amazon Web Services for the Greek Academic and Research Community.

Downloads last month
198
Safetensors
Model size
8.2B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for ilsp/Llama-Krikri-8B-Instruct

Finetuned
(1)
this model
Quantizations
4 models