apple-detection-with-rtdetr-rd50vd-coco-o365

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.7891
  • Map: 0.8588
  • Map 50: 0.9441
  • Map 75: 0.9232
  • Map Small: -1.0
  • Map Medium: -1.0
  • Map Large: 0.8593
  • Mar 1: 0.2596
  • Mar 10: 0.7771
  • Mar 100: 0.94
  • Mar Small: -1.0
  • Mar Medium: -1.0
  • Mar Large: 0.94
  • Map Apple: 0.8588
  • Mar 100 Apple: 0.94

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Apple Mar 100 Apple
No log 1.0 169 14.5718 0.1228 0.2421 0.1084 -1.0 0.0157 0.1399 0.1375 0.3146 0.6275 -1.0 0.5333 0.6277 0.1228 0.6275
No log 2.0 338 9.2170 0.5022 0.692 0.5452 -1.0 0.3272 0.5035 0.225 0.5618 0.8138 -1.0 0.9333 0.8136 0.5022 0.8138
30.1672 3.0 507 8.8104 0.5503 0.6829 0.6163 -1.0 0.4455 0.5516 0.2309 0.6075 0.8643 -1.0 0.9 0.8642 0.5503 0.8643
30.1672 4.0 676 8.0371 0.6275 0.7697 0.7078 -1.0 0.4374 0.6279 0.2427 0.6525 0.8602 -1.0 0.9333 0.86 0.6275 0.8602
30.1672 5.0 845 7.0432 0.6851 0.807 0.778 -1.0 0.521 0.6858 0.2448 0.6939 0.8754 -1.0 0.7667 0.8757 0.6851 0.8754
12.3777 6.0 1014 7.4024 0.7262 0.8607 0.8231 -1.0 0.4729 0.729 0.2437 0.6998 0.8842 -1.0 0.9 0.8842 0.7262 0.8842
12.3777 7.0 1183 7.6969 0.7006 0.8097 0.7746 -1.0 0.417 0.7031 0.2443 0.7104 0.8897 -1.0 0.7667 0.89 0.7006 0.8897
12.3777 8.0 1352 7.0771 0.7536 0.8664 0.8397 -1.0 0.7023 0.7541 0.249 0.7151 0.891 -1.0 0.9333 0.8909 0.7536 0.891
11.4378 9.0 1521 7.6821 0.7493 0.8728 0.8397 -1.0 0.5096 0.7509 0.2484 0.7257 0.9009 -1.0 0.9 0.9009 0.7493 0.9009
11.4378 10.0 1690 7.0789 0.7901 0.9168 0.8872 -1.0 0.5995 0.7907 0.2459 0.7272 0.8985 -1.0 0.8667 0.8985 0.7901 0.8985
11.4378 11.0 1859 7.1990 0.7908 0.894 0.8677 -1.0 0.6183 0.7918 0.2503 0.7353 0.9113 -1.0 0.9 0.9114 0.7908 0.9113
10.5157 12.0 2028 6.6454 0.7664 0.8872 0.8547 -1.0 0.5614 0.7677 0.248 0.7315 0.8994 -1.0 0.8667 0.8995 0.7664 0.8994
10.5157 13.0 2197 7.4329 0.7401 0.8425 0.812 -1.0 0.7072 0.7409 0.2485 0.7313 0.902 -1.0 0.9 0.902 0.7401 0.902
10.5157 14.0 2366 6.7330 0.8094 0.9061 0.8781 -1.0 0.7158 0.8098 0.2523 0.7525 0.9168 -1.0 0.9 0.9169 0.8094 0.9168
9.8125 15.0 2535 6.5761 0.8023 0.9071 0.8815 -1.0 0.7502 0.8029 0.2528 0.7456 0.9108 -1.0 0.8667 0.9109 0.8023 0.9108
9.8125 16.0 2704 6.5281 0.818 0.919 0.8961 -1.0 0.6455 0.8185 0.252 0.7501 0.9141 -1.0 0.9 0.9141 0.818 0.9141
9.8125 17.0 2873 6.6390 0.8178 0.9158 0.8959 -1.0 0.7281 0.8189 0.251 0.7423 0.9179 -1.0 0.9 0.918 0.8178 0.9179
9.4182 18.0 3042 6.4843 0.8341 0.9298 0.9035 -1.0 0.6102 0.8347 0.2507 0.7526 0.9203 -1.0 0.8667 0.9205 0.8341 0.9203
9.4182 19.0 3211 7.2777 0.7999 0.9018 0.8787 -1.0 0.6338 0.8015 0.249 0.7413 0.9173 -1.0 0.9 0.9173 0.7999 0.9173
9.4182 20.0 3380 6.6993 0.8291 0.9234 0.8972 -1.0 0.7493 0.8301 0.2516 0.7537 0.9245 -1.0 0.9333 0.9245 0.8291 0.9245
9.0821 21.0 3549 6.8164 0.8154 0.9222 0.9018 -1.0 0.7889 0.8158 0.2533 0.744 0.9167 -1.0 0.9333 0.9166 0.8154 0.9167
9.0821 22.0 3718 6.7705 0.8158 0.9272 0.9034 -1.0 0.6072 0.8169 0.2473 0.7421 0.9116 -1.0 0.9 0.9117 0.8158 0.9116
9.0821 23.0 3887 5.8021 0.838 0.9356 0.9121 -1.0 0.6007 0.8391 0.2505 0.7538 0.9247 -1.0 0.9 0.9248 0.838 0.9247
8.7442 24.0 4056 6.3070 0.8475 0.9312 0.9098 -1.0 0.7521 0.8481 0.2531 0.7582 0.9282 -1.0 0.9333 0.9282 0.8475 0.9282
8.7442 25.0 4225 5.7625 0.8491 0.9336 0.9136 -1.0 0.7109 0.8498 0.2511 0.7639 0.9285 -1.0 0.9333 0.9285 0.8491 0.9285
8.7442 26.0 4394 5.9863 0.8284 0.9285 0.9072 -1.0 0.5891 0.8295 0.2525 0.7493 0.9185 -1.0 0.7667 0.9188 0.8284 0.9185
8.3969 27.0 4563 6.0623 0.8271 0.9343 0.9078 -1.0 0.5669 0.8277 0.2521 0.7518 0.9097 -1.0 0.8 0.91 0.8271 0.9097
8.3969 28.0 4732 6.2344 0.8329 0.9302 0.9033 -1.0 0.5902 0.8336 0.2519 0.7548 0.9247 -1.0 0.9 0.9248 0.8329 0.9247
8.3969 29.0 4901 6.1610 0.8294 0.9177 0.8965 -1.0 0.6745 0.8304 0.2503 0.7544 0.9315 -1.0 0.9 0.9315 0.8294 0.9315
8.2127 30.0 5070 6.5000 0.8297 0.9219 0.9001 -1.0 0.6378 0.8305 0.2508 0.7541 0.9225 -1.0 0.8667 0.9227 0.8297 0.9225

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.21.0
Downloads last month
11
Safetensors
Model size
42.9M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for firdhokk/apple-detection-with-rtdetr-rd50vd-coco-o365

Finetuned
(16)
this model