Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: bigscience/bloom-560m
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 084d4537100cb186_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/084d4537100cb186_train_data.json
  type:
    field_input: langpair
    field_instruction: source
    field_output: good-translation
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: error577/c9014b2e-4cf8-4380-a7b9-319dcd8bb12a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/084d4537100cb186_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 15f4c23f-d52e-4354-806b-0c5da0374350
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 15f4c23f-d52e-4354-806b-0c5da0374350
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

c9014b2e-4cf8-4380-a7b9-319dcd8bb12a

This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 4.4030
6.5189 0.0222 100 2.6937
7.8292 0.0444 200 2.4313
5.3937 0.0666 300 2.3118
7.8199 0.0888 400 2.2125
5.4877 0.1110 500 2.1706
4.9892 0.1332 600 2.0680
5.6608 0.1554 700 2.0517
4.671 0.1776 800 2.0242
6.3505 0.1998 900 1.8601
4.1893 0.2220 1000 1.8662
4.8748 0.2441 1100 1.8771
5.0172 0.2663 1200 1.8052
5.2344 0.2885 1300 1.8127
4.4286 0.3107 1400 1.7529
4.4394 0.3329 1500 1.7735
4.4868 0.3551 1600 1.6954
4.6618 0.3773 1700 1.7275
4.6153 0.3995 1800 1.6793
5.0591 0.4217 1900 1.7122
3.6119 0.4439 2000 1.6413
3.9039 0.4661 2100 1.6450
4.1736 0.4883 2200 1.6268
4.7935 0.5105 2300 1.6143
4.0114 0.5327 2400 1.5969
3.9156 0.5549 2500 1.5649
4.5978 0.5771 2600 1.5713
3.7863 0.5993 2700 1.5953
3.469 0.6215 2800 1.5994

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
41
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for error577/c9014b2e-4cf8-4380-a7b9-319dcd8bb12a

Adapter
(222)
this model