See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: unsloth/tinyllama-chat
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 17acfb9d6efbdd55_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/17acfb9d6efbdd55_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: error577/b863e77b-b534-42a0-94c9-311dad4b8a87
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/17acfb9d6efbdd55_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: abb078a6-11b7-4027-a142-41054e53ca1a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: abb078a6-11b7-4027-a142-41054e53ca1a
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
b863e77b-b534-42a0-94c9-311dad4b8a87
This model is a fine-tuned version of unsloth/tinyllama-chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4750
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 0.8539 |
0.6521 | 0.0164 | 100 | 0.7284 |
0.6338 | 0.0328 | 200 | 0.6849 |
0.5859 | 0.0492 | 300 | 0.6505 |
0.6338 | 0.0656 | 400 | 0.6351 |
0.5513 | 0.0820 | 500 | 0.6273 |
0.5518 | 0.0984 | 600 | 0.6050 |
0.5859 | 0.1149 | 700 | 0.5943 |
0.5074 | 0.1313 | 800 | 0.5759 |
0.4992 | 0.1477 | 900 | 0.5714 |
0.5219 | 0.1641 | 1000 | 0.5584 |
0.4703 | 0.1805 | 1100 | 0.5566 |
0.4787 | 0.1969 | 1200 | 0.5496 |
0.5744 | 0.2133 | 1300 | 0.5442 |
0.5262 | 0.2297 | 1400 | 0.5347 |
0.4898 | 0.2461 | 1500 | 0.5358 |
0.4646 | 0.2625 | 1600 | 0.5315 |
0.4983 | 0.2789 | 1700 | 0.5236 |
0.4164 | 0.2953 | 1800 | 0.5266 |
0.4321 | 0.3118 | 1900 | 0.5231 |
0.4791 | 0.3282 | 2000 | 0.5171 |
0.403 | 0.3446 | 2100 | 0.5146 |
0.4185 | 0.3610 | 2200 | 0.5143 |
0.5147 | 0.3774 | 2300 | 0.5039 |
0.3894 | 0.3938 | 2400 | 0.5091 |
0.4499 | 0.4102 | 2500 | 0.5056 |
0.4924 | 0.4266 | 2600 | 0.5015 |
0.5006 | 0.4430 | 2700 | 0.4962 |
0.3921 | 0.4594 | 2800 | 0.4935 |
0.5255 | 0.4758 | 2900 | 0.4969 |
0.4371 | 0.4922 | 3000 | 0.4953 |
0.4467 | 0.5087 | 3100 | 0.4926 |
0.4724 | 0.5251 | 3200 | 0.4886 |
0.4128 | 0.5415 | 3300 | 0.4827 |
0.4412 | 0.5579 | 3400 | 0.4836 |
0.4208 | 0.5743 | 3500 | 0.4800 |
0.4362 | 0.5907 | 3600 | 0.4805 |
0.4851 | 0.6071 | 3700 | 0.4744 |
0.4869 | 0.6235 | 3800 | 0.4735 |
0.4309 | 0.6399 | 3900 | 0.4715 |
0.4399 | 0.6563 | 4000 | 0.4815 |
0.4201 | 0.6727 | 4100 | 0.4749 |
0.419 | 0.6891 | 4200 | 0.4750 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for error577/b863e77b-b534-42a0-94c9-311dad4b8a87
Base model
unsloth/tinyllama-chat