See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: unsloth/gemma-2-2b-it
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 54929ad3d49fc46e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/54929ad3d49fc46e_train_data.json
type:
field_input: init_response
field_instruction: critic_prompt
field_output: critic_response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/ab791181-b972-4b35-b923-b8ef78a4571a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 1
mlflow_experiment_name: /tmp/54929ad3d49fc46e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: fc91fd68-374e-48f4-a933-38421892744d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fc91fd68-374e-48f4-a933-38421892744d
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
ab791181-b972-4b35-b923-b8ef78a4571a
This model is a fine-tuned version of unsloth/gemma-2-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6024
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | 1.6862 |
0.4191 | 0.0046 | 100 | 0.7408 |
0.2444 | 0.0092 | 200 | 0.7048 |
0.577 | 0.0138 | 300 | 0.6162 |
0.4774 | 0.0183 | 400 | 0.5891 |
0.461 | 0.0229 | 500 | 0.6063 |
0.3479 | 0.0275 | 600 | 0.6636 |
0.3134 | 0.0321 | 700 | 0.6024 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for error577/ab791181-b972-4b35-b923-b8ef78a4571a
Base model
unsloth/gemma-2-2b-it