See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 4bbd53a67d293afe_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4bbd53a67d293afe_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/01ccba0e-ec73-458d-8b3f-cd49b725f91c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/4bbd53a67d293afe_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 2da1b8da-fcf3-4d42-b4ea-e536ab198f3e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2da1b8da-fcf3-4d42-b4ea-e536ab198f3e
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
01ccba0e-ec73-458d-8b3f-cd49b725f91c
This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf-flash on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1951
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 1.1623 |
0.2625 | 0.0168 | 100 | 0.3775 |
0.2999 | 0.0335 | 200 | 0.3310 |
0.152 | 0.0503 | 300 | 0.2558 |
0.1516 | 0.0670 | 400 | 0.2434 |
0.1028 | 0.0838 | 500 | 0.3978 |
0.1054 | 0.1005 | 600 | 0.2447 |
0.1057 | 0.1173 | 700 | 0.2287 |
0.1816 | 0.1340 | 800 | 0.2239 |
0.0807 | 0.1508 | 900 | 0.2128 |
0.1286 | 0.1675 | 1000 | 0.2033 |
0.1858 | 0.1843 | 1100 | 0.2038 |
0.1361 | 0.2010 | 1200 | 0.1928 |
0.1428 | 0.2178 | 1300 | 0.1864 |
0.1253 | 0.2345 | 1400 | 0.1913 |
0.1476 | 0.2513 | 1500 | 0.1920 |
0.153 | 0.2680 | 1600 | 0.1805 |
0.1416 | 0.2848 | 1700 | 0.1777 |
0.0545 | 0.3015 | 1800 | 0.2057 |
0.2373 | 0.3183 | 1900 | 0.1916 |
0.098 | 0.3350 | 2000 | 0.1951 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for error577/01ccba0e-ec73-458d-8b3f-cd49b725f91c
Base model
NousResearch/CodeLlama-7b-hf-flash