wav2vec2-xls-r-300m-scandinavian-E2-100h-30-epochs-20250129_v2.2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1222
  • Wer: 21.6178
  • Cer: 4.5303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.3227 0.5831 1000 3.2779 99.9982 99.0647
1.3019 1.1662 2000 0.8990 74.2685 20.8956
0.5718 1.7493 3000 0.3181 43.9153 10.5261
0.4453 2.3324 4000 0.2424 36.6078 8.5666
0.3749 2.9155 5000 0.2031 34.0956 7.8005
0.3686 3.4985 6000 0.1904 32.1394 7.2849
0.3006 4.0816 7000 0.1812 30.3624 6.9172
0.2924 4.6647 8000 0.1689 29.4684 6.6876
0.2346 5.2478 9000 0.1550 28.0239 6.2367
0.2272 5.8309 10000 0.1484 27.8096 6.2244
0.2469 6.4140 11000 0.1536 27.1668 6.0145
0.2508 6.9971 12000 0.1471 26.8398 5.9329
0.2041 7.5802 13000 0.1448 26.1213 5.7387
0.1724 8.1633 14000 0.1412 25.7832 5.6786
0.1813 8.7464 15000 0.1389 25.7333 5.6383
0.1942 9.3294 16000 0.1373 25.4119 5.5902
0.171 9.9125 17000 0.1382 25.3584 5.5399
0.2056 10.4956 18000 0.1392 24.9649 5.5094
0.1462 11.0787 19000 0.1363 24.4846 5.3482
0.1669 11.6618 20000 0.1360 24.3756 5.3060
0.1471 12.2449 21000 0.1298 24.2630 5.2992
0.166 12.8280 22000 0.1321 24.2020 5.2576
0.1785 13.4111 23000 0.1285 24.1725 5.2435
0.1785 13.9942 24000 0.1251 23.8714 5.1578
0.1407 14.5773 25000 0.1287 23.9970 5.2290
0.1093 15.1603 26000 0.1303 23.5204 5.0653
0.1005 15.7434 27000 0.1295 23.3061 5.0284
0.1399 16.3265 28000 0.1283 23.3043 4.9784
0.1239 16.9096 29000 0.1277 23.0937 4.9328
0.1208 17.4927 30000 0.1277 23.1103 4.9606
0.1013 18.0758 31000 0.1248 22.7538 4.8388
0.0926 18.6589 32000 0.1207 22.5783 4.7880
0.1262 19.2420 33000 0.1246 22.5525 4.8188
0.1168 19.8251 34000 0.1254 22.3363 4.7420
0.1158 20.4082 35000 0.1242 22.2625 4.7180
0.1149 20.9913 36000 0.1210 22.1461 4.6841
0.0818 21.5743 37000 0.1223 22.0223 4.6709
0.0982 22.1574 38000 0.1237 22.0371 4.6625
0.105 22.7405 39000 0.1205 21.8191 4.5981
0.104 23.3236 40000 0.1208 21.8431 4.5917
0.101 23.9067 41000 0.1217 21.7970 4.5954
0.0714 24.4898 42000 0.1230 21.7637 4.5707
0.0753 25.0729 43000 0.1208 21.6732 4.5405
0.0744 25.6560 44000 0.1213 21.6935 4.5439
0.0954 26.2391 45000 0.1200 21.6861 4.5402
0.0909 26.8222 46000 0.1215 21.6658 4.5411
0.0848 27.4052 47000 0.1224 21.6399 4.5328
0.0851 27.9883 48000 0.1228 21.6104 4.5331
0.0689 28.5714 49000 0.1225 21.6547 4.5390
0.0855 29.1545 50000 0.1224 21.6178 4.5334
0.0857 29.7376 51000 0.1222 21.6178 4.5303

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for davidilag/wav2vec2-xls-r-300m-scandinavian-E2-100h-30-epochs-20250129_v2.2

Finetuned
(544)
this model