wav2vec2-xls-r-300m-faroese-100h-60-epochs_20250122

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1124
  • Wer: 18.4782
  • Cer: 3.9149

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6000
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.4358 0.4877 1000 3.3478 100.0 98.6201
1.7182 0.9754 2000 1.2803 85.5267 29.7266
0.6446 1.4628 3000 0.3541 42.8471 11.2580
0.5175 1.9505 4000 0.2806 37.2869 9.5388
0.3949 2.4379 5000 0.2186 32.0659 8.0058
0.3617 2.9256 6000 0.1976 30.4710 7.5987
0.2844 3.4131 7000 0.1740 28.1799 6.9052
0.2947 3.9008 8000 0.1591 27.3781 6.5904
0.242 4.3882 9000 0.1474 26.4044 6.2251
0.2464 4.8759 10000 0.1466 26.0651 6.2669
0.1967 5.3633 11000 0.1528 25.1267 5.9774
0.2109 5.8510 12000 0.1286 24.7962 5.8574
0.1707 6.3385 13000 0.1310 24.8183 5.8022
0.1799 6.8261 14000 0.1284 23.7917 5.5505
0.1513 7.3136 15000 0.1294 23.7564 5.5813
0.1585 7.8013 16000 0.1195 23.3335 5.4006
0.1505 8.2887 17000 0.1214 23.1572 5.3785
0.1479 8.7764 18000 0.1291 22.9017 5.3130
0.1309 9.2638 19000 0.1229 22.7916 5.3328
0.1417 9.7515 20000 0.1210 22.5140 5.2184
0.1292 10.2390 21000 0.1166 22.3730 5.1047
0.118 10.7267 22000 0.1153 22.4479 5.1371
0.1042 11.2141 23000 0.1248 22.2144 5.0858
0.098 11.7018 24000 0.1189 22.0161 4.9990
0.1063 12.1892 25000 0.1182 21.8399 5.0408
0.0986 12.6769 26000 0.1225 21.8972 4.9935
0.1026 13.1644 27000 0.1130 21.5403 4.8538
0.0968 13.6520 28000 0.1151 21.5888 4.9059
0.0889 14.1395 29000 0.1155 21.5888 4.9564
0.1088 14.6272 30000 0.1071 21.2319 4.7970
0.0882 15.1146 31000 0.1157 21.5491 4.8341
0.0858 15.6023 32000 0.1141 21.2407 4.8073
0.0896 16.0897 33000 0.1122 20.9367 4.7102
0.0849 16.5774 34000 0.1147 20.9675 4.7710
0.0719 17.0649 35000 0.1149 21.2848 4.7947
0.0694 17.5525 36000 0.1263 20.9411 4.7489
0.0785 18.0400 37000 0.1114 20.8750 4.6597
0.0722 18.5277 38000 0.1146 20.9763 4.7016
0.0748 19.0151 39000 0.1101 20.7208 4.6290
0.0676 19.5028 40000 0.1120 20.7737 4.6511
0.067 19.9905 41000 0.1120 20.5049 4.5722
0.0681 20.4779 42000 0.1232 21.0645 4.6637
0.0638 20.9656 43000 0.1096 20.5798 4.5446
0.0574 21.4531 44000 0.1137 20.7208 4.6069
0.0874 21.9407 45000 0.1155 20.5049 4.5738
0.0716 22.4282 46000 0.1118 20.3331 4.5335
0.078 22.9159 47000 0.1140 20.5181 4.5769
0.0692 23.4033 48000 0.1174 20.3551 4.5272
0.0582 23.8910 49000 0.1229 20.2758 4.4941
0.0677 24.3784 50000 0.1108 20.0864 4.4467
0.0638 24.8661 51000 0.1119 20.1216 4.4451
0.0591 25.3536 52000 0.1120 20.3419 4.4657
0.0538 25.8413 53000 0.1147 19.9586 4.4120
0.0638 26.3287 54000 0.1104 20.0159 4.3883
0.0503 26.8164 55000 0.1160 20.0247 4.4160
0.0614 27.3038 56000 0.1124 20.0070 4.3868
0.0632 27.7915 57000 0.1165 20.0335 4.4160
0.0686 28.2790 58000 0.1109 20.0819 4.3741
0.0518 28.7666 59000 0.1112 19.8352 4.3733
0.0595 29.2541 60000 0.1106 19.7251 4.3655
0.0583 29.7418 61000 0.1120 19.7163 4.3710
0.0596 30.2292 62000 0.1111 19.7779 4.3268
0.0703 30.7169 63000 0.1117 19.9277 4.3812
0.058 31.2043 64000 0.1161 19.8572 4.3655
0.0577 31.6920 65000 0.1041 19.5841 4.2440
0.0638 32.1795 66000 0.1191 19.7735 4.3268
0.0596 32.6672 67000 0.1110 19.7779 4.3118
0.0569 33.1546 68000 0.1140 19.6766 4.2771
0.0528 33.6423 69000 0.1128 19.7030 4.3039
0.0488 34.1297 70000 0.1152 19.5532 4.2668
0.0635 34.6174 71000 0.1086 19.5048 4.2463
0.0574 35.1049 72000 0.1137 19.5621 4.2503
0.0473 35.5925 73000 0.1111 19.5885 4.2558
0.0442 36.0800 74000 0.1182 19.4872 4.2392
0.0504 36.5677 75000 0.1111 19.4431 4.2219
0.042 37.0551 76000 0.1208 19.5356 4.2369
0.055 37.5428 77000 0.1176 19.5444 4.2645
0.0534 38.0302 78000 0.1111 19.3594 4.1974
0.049 38.5179 79000 0.1184 19.4034 4.2148
0.0419 39.0054 80000 0.1148 19.3374 4.2171
0.0388 39.4931 81000 0.1137 19.3021 4.1927
0.0413 39.9807 82000 0.1171 19.2713 4.1722
0.0519 40.4682 83000 0.1162 19.1391 4.1296
0.0514 40.9559 84000 0.1189 19.2713 4.1974
0.0534 41.4433 85000 0.1144 19.1611 4.1438
0.0433 41.9310 86000 0.1134 19.1391 4.1351
0.0435 42.4184 87000 0.1187 19.1259 4.1248
0.0386 42.9061 88000 0.1106 19.1303 4.1035
0.0459 43.3936 89000 0.1152 19.1347 4.1264
0.0476 43.8812 90000 0.1179 19.0157 4.0980
0.0397 44.3687 91000 0.1197 18.9629 4.0917
0.0521 44.8564 92000 0.1174 19.0818 4.0925
0.0491 45.3438 93000 0.1153 18.9100 4.0530
0.052 45.8315 94000 0.1176 18.9585 4.0712
0.0303 46.3189 95000 0.1162 18.8703 4.0475
0.0431 46.8066 96000 0.1154 18.9364 4.0333
0.0444 47.2941 97000 0.1164 18.9629 4.0436
0.0373 47.7818 98000 0.1196 18.8659 4.0514
0.0387 48.2692 99000 0.1166 18.8307 4.0436
0.0413 48.7569 100000 0.1159 18.9496 4.0491
0.0445 49.2443 101000 0.1141 18.8836 4.0467
0.0375 49.7320 102000 0.1168 19.0906 4.0917
0.032 50.2195 103000 0.1158 18.8087 4.0372
0.0361 50.7071 104000 0.1170 18.8131 4.0025
0.0305 51.1946 105000 0.1166 18.8395 4.0222
0.0483 51.6823 106000 0.1122 18.8659 4.0080
0.028 52.1697 107000 0.1099 18.6941 3.9804
0.0305 52.6574 108000 0.1114 18.6677 3.9615
0.0367 53.1448 109000 0.1113 18.5663 3.9615
0.0249 53.6325 110000 0.1127 18.5884 3.9615
0.0316 54.1200 111000 0.1164 18.5487 3.9536
0.0357 54.6077 112000 0.1135 18.5707 3.9473
0.0358 55.0951 113000 0.1138 18.4782 3.9378
0.0353 55.5828 114000 0.1137 18.4782 3.9370
0.0237 56.0702 115000 0.1143 18.5487 3.9339
0.0273 56.5579 116000 0.1121 18.5399 3.9244
0.0312 57.0454 117000 0.1135 18.4826 3.9165
0.0317 57.5330 118000 0.1125 18.5002 3.9220
0.0286 58.0205 119000 0.1122 18.4253 3.9055
0.0312 58.5082 120000 0.1133 18.4386 3.9110
0.0214 58.9959 121000 0.1136 18.4694 3.9102
0.0292 59.4833 122000 0.1123 18.5179 3.9142
0.026 59.9710 123000 0.1124 18.4782 3.9149

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for davidilag/wav2vec2-xls-r-300m-faroese-100h-60-epochs_20250122

Finetuned
(544)
this model