wav2vec2-xls-r-300m-faroese-100h-60-epochs_20250122
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1124
- Wer: 18.4782
- Cer: 3.9149
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 6000
- num_epochs: 60
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.4358 | 0.4877 | 1000 | 3.3478 | 100.0 | 98.6201 |
1.7182 | 0.9754 | 2000 | 1.2803 | 85.5267 | 29.7266 |
0.6446 | 1.4628 | 3000 | 0.3541 | 42.8471 | 11.2580 |
0.5175 | 1.9505 | 4000 | 0.2806 | 37.2869 | 9.5388 |
0.3949 | 2.4379 | 5000 | 0.2186 | 32.0659 | 8.0058 |
0.3617 | 2.9256 | 6000 | 0.1976 | 30.4710 | 7.5987 |
0.2844 | 3.4131 | 7000 | 0.1740 | 28.1799 | 6.9052 |
0.2947 | 3.9008 | 8000 | 0.1591 | 27.3781 | 6.5904 |
0.242 | 4.3882 | 9000 | 0.1474 | 26.4044 | 6.2251 |
0.2464 | 4.8759 | 10000 | 0.1466 | 26.0651 | 6.2669 |
0.1967 | 5.3633 | 11000 | 0.1528 | 25.1267 | 5.9774 |
0.2109 | 5.8510 | 12000 | 0.1286 | 24.7962 | 5.8574 |
0.1707 | 6.3385 | 13000 | 0.1310 | 24.8183 | 5.8022 |
0.1799 | 6.8261 | 14000 | 0.1284 | 23.7917 | 5.5505 |
0.1513 | 7.3136 | 15000 | 0.1294 | 23.7564 | 5.5813 |
0.1585 | 7.8013 | 16000 | 0.1195 | 23.3335 | 5.4006 |
0.1505 | 8.2887 | 17000 | 0.1214 | 23.1572 | 5.3785 |
0.1479 | 8.7764 | 18000 | 0.1291 | 22.9017 | 5.3130 |
0.1309 | 9.2638 | 19000 | 0.1229 | 22.7916 | 5.3328 |
0.1417 | 9.7515 | 20000 | 0.1210 | 22.5140 | 5.2184 |
0.1292 | 10.2390 | 21000 | 0.1166 | 22.3730 | 5.1047 |
0.118 | 10.7267 | 22000 | 0.1153 | 22.4479 | 5.1371 |
0.1042 | 11.2141 | 23000 | 0.1248 | 22.2144 | 5.0858 |
0.098 | 11.7018 | 24000 | 0.1189 | 22.0161 | 4.9990 |
0.1063 | 12.1892 | 25000 | 0.1182 | 21.8399 | 5.0408 |
0.0986 | 12.6769 | 26000 | 0.1225 | 21.8972 | 4.9935 |
0.1026 | 13.1644 | 27000 | 0.1130 | 21.5403 | 4.8538 |
0.0968 | 13.6520 | 28000 | 0.1151 | 21.5888 | 4.9059 |
0.0889 | 14.1395 | 29000 | 0.1155 | 21.5888 | 4.9564 |
0.1088 | 14.6272 | 30000 | 0.1071 | 21.2319 | 4.7970 |
0.0882 | 15.1146 | 31000 | 0.1157 | 21.5491 | 4.8341 |
0.0858 | 15.6023 | 32000 | 0.1141 | 21.2407 | 4.8073 |
0.0896 | 16.0897 | 33000 | 0.1122 | 20.9367 | 4.7102 |
0.0849 | 16.5774 | 34000 | 0.1147 | 20.9675 | 4.7710 |
0.0719 | 17.0649 | 35000 | 0.1149 | 21.2848 | 4.7947 |
0.0694 | 17.5525 | 36000 | 0.1263 | 20.9411 | 4.7489 |
0.0785 | 18.0400 | 37000 | 0.1114 | 20.8750 | 4.6597 |
0.0722 | 18.5277 | 38000 | 0.1146 | 20.9763 | 4.7016 |
0.0748 | 19.0151 | 39000 | 0.1101 | 20.7208 | 4.6290 |
0.0676 | 19.5028 | 40000 | 0.1120 | 20.7737 | 4.6511 |
0.067 | 19.9905 | 41000 | 0.1120 | 20.5049 | 4.5722 |
0.0681 | 20.4779 | 42000 | 0.1232 | 21.0645 | 4.6637 |
0.0638 | 20.9656 | 43000 | 0.1096 | 20.5798 | 4.5446 |
0.0574 | 21.4531 | 44000 | 0.1137 | 20.7208 | 4.6069 |
0.0874 | 21.9407 | 45000 | 0.1155 | 20.5049 | 4.5738 |
0.0716 | 22.4282 | 46000 | 0.1118 | 20.3331 | 4.5335 |
0.078 | 22.9159 | 47000 | 0.1140 | 20.5181 | 4.5769 |
0.0692 | 23.4033 | 48000 | 0.1174 | 20.3551 | 4.5272 |
0.0582 | 23.8910 | 49000 | 0.1229 | 20.2758 | 4.4941 |
0.0677 | 24.3784 | 50000 | 0.1108 | 20.0864 | 4.4467 |
0.0638 | 24.8661 | 51000 | 0.1119 | 20.1216 | 4.4451 |
0.0591 | 25.3536 | 52000 | 0.1120 | 20.3419 | 4.4657 |
0.0538 | 25.8413 | 53000 | 0.1147 | 19.9586 | 4.4120 |
0.0638 | 26.3287 | 54000 | 0.1104 | 20.0159 | 4.3883 |
0.0503 | 26.8164 | 55000 | 0.1160 | 20.0247 | 4.4160 |
0.0614 | 27.3038 | 56000 | 0.1124 | 20.0070 | 4.3868 |
0.0632 | 27.7915 | 57000 | 0.1165 | 20.0335 | 4.4160 |
0.0686 | 28.2790 | 58000 | 0.1109 | 20.0819 | 4.3741 |
0.0518 | 28.7666 | 59000 | 0.1112 | 19.8352 | 4.3733 |
0.0595 | 29.2541 | 60000 | 0.1106 | 19.7251 | 4.3655 |
0.0583 | 29.7418 | 61000 | 0.1120 | 19.7163 | 4.3710 |
0.0596 | 30.2292 | 62000 | 0.1111 | 19.7779 | 4.3268 |
0.0703 | 30.7169 | 63000 | 0.1117 | 19.9277 | 4.3812 |
0.058 | 31.2043 | 64000 | 0.1161 | 19.8572 | 4.3655 |
0.0577 | 31.6920 | 65000 | 0.1041 | 19.5841 | 4.2440 |
0.0638 | 32.1795 | 66000 | 0.1191 | 19.7735 | 4.3268 |
0.0596 | 32.6672 | 67000 | 0.1110 | 19.7779 | 4.3118 |
0.0569 | 33.1546 | 68000 | 0.1140 | 19.6766 | 4.2771 |
0.0528 | 33.6423 | 69000 | 0.1128 | 19.7030 | 4.3039 |
0.0488 | 34.1297 | 70000 | 0.1152 | 19.5532 | 4.2668 |
0.0635 | 34.6174 | 71000 | 0.1086 | 19.5048 | 4.2463 |
0.0574 | 35.1049 | 72000 | 0.1137 | 19.5621 | 4.2503 |
0.0473 | 35.5925 | 73000 | 0.1111 | 19.5885 | 4.2558 |
0.0442 | 36.0800 | 74000 | 0.1182 | 19.4872 | 4.2392 |
0.0504 | 36.5677 | 75000 | 0.1111 | 19.4431 | 4.2219 |
0.042 | 37.0551 | 76000 | 0.1208 | 19.5356 | 4.2369 |
0.055 | 37.5428 | 77000 | 0.1176 | 19.5444 | 4.2645 |
0.0534 | 38.0302 | 78000 | 0.1111 | 19.3594 | 4.1974 |
0.049 | 38.5179 | 79000 | 0.1184 | 19.4034 | 4.2148 |
0.0419 | 39.0054 | 80000 | 0.1148 | 19.3374 | 4.2171 |
0.0388 | 39.4931 | 81000 | 0.1137 | 19.3021 | 4.1927 |
0.0413 | 39.9807 | 82000 | 0.1171 | 19.2713 | 4.1722 |
0.0519 | 40.4682 | 83000 | 0.1162 | 19.1391 | 4.1296 |
0.0514 | 40.9559 | 84000 | 0.1189 | 19.2713 | 4.1974 |
0.0534 | 41.4433 | 85000 | 0.1144 | 19.1611 | 4.1438 |
0.0433 | 41.9310 | 86000 | 0.1134 | 19.1391 | 4.1351 |
0.0435 | 42.4184 | 87000 | 0.1187 | 19.1259 | 4.1248 |
0.0386 | 42.9061 | 88000 | 0.1106 | 19.1303 | 4.1035 |
0.0459 | 43.3936 | 89000 | 0.1152 | 19.1347 | 4.1264 |
0.0476 | 43.8812 | 90000 | 0.1179 | 19.0157 | 4.0980 |
0.0397 | 44.3687 | 91000 | 0.1197 | 18.9629 | 4.0917 |
0.0521 | 44.8564 | 92000 | 0.1174 | 19.0818 | 4.0925 |
0.0491 | 45.3438 | 93000 | 0.1153 | 18.9100 | 4.0530 |
0.052 | 45.8315 | 94000 | 0.1176 | 18.9585 | 4.0712 |
0.0303 | 46.3189 | 95000 | 0.1162 | 18.8703 | 4.0475 |
0.0431 | 46.8066 | 96000 | 0.1154 | 18.9364 | 4.0333 |
0.0444 | 47.2941 | 97000 | 0.1164 | 18.9629 | 4.0436 |
0.0373 | 47.7818 | 98000 | 0.1196 | 18.8659 | 4.0514 |
0.0387 | 48.2692 | 99000 | 0.1166 | 18.8307 | 4.0436 |
0.0413 | 48.7569 | 100000 | 0.1159 | 18.9496 | 4.0491 |
0.0445 | 49.2443 | 101000 | 0.1141 | 18.8836 | 4.0467 |
0.0375 | 49.7320 | 102000 | 0.1168 | 19.0906 | 4.0917 |
0.032 | 50.2195 | 103000 | 0.1158 | 18.8087 | 4.0372 |
0.0361 | 50.7071 | 104000 | 0.1170 | 18.8131 | 4.0025 |
0.0305 | 51.1946 | 105000 | 0.1166 | 18.8395 | 4.0222 |
0.0483 | 51.6823 | 106000 | 0.1122 | 18.8659 | 4.0080 |
0.028 | 52.1697 | 107000 | 0.1099 | 18.6941 | 3.9804 |
0.0305 | 52.6574 | 108000 | 0.1114 | 18.6677 | 3.9615 |
0.0367 | 53.1448 | 109000 | 0.1113 | 18.5663 | 3.9615 |
0.0249 | 53.6325 | 110000 | 0.1127 | 18.5884 | 3.9615 |
0.0316 | 54.1200 | 111000 | 0.1164 | 18.5487 | 3.9536 |
0.0357 | 54.6077 | 112000 | 0.1135 | 18.5707 | 3.9473 |
0.0358 | 55.0951 | 113000 | 0.1138 | 18.4782 | 3.9378 |
0.0353 | 55.5828 | 114000 | 0.1137 | 18.4782 | 3.9370 |
0.0237 | 56.0702 | 115000 | 0.1143 | 18.5487 | 3.9339 |
0.0273 | 56.5579 | 116000 | 0.1121 | 18.5399 | 3.9244 |
0.0312 | 57.0454 | 117000 | 0.1135 | 18.4826 | 3.9165 |
0.0317 | 57.5330 | 118000 | 0.1125 | 18.5002 | 3.9220 |
0.0286 | 58.0205 | 119000 | 0.1122 | 18.4253 | 3.9055 |
0.0312 | 58.5082 | 120000 | 0.1133 | 18.4386 | 3.9110 |
0.0214 | 58.9959 | 121000 | 0.1136 | 18.4694 | 3.9102 |
0.0292 | 59.4833 | 122000 | 0.1123 | 18.5179 | 3.9142 |
0.026 | 59.9710 | 123000 | 0.1124 | 18.4782 | 3.9149 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for davidilag/wav2vec2-xls-r-300m-faroese-100h-60-epochs_20250122
Base model
facebook/wav2vec2-xls-r-300m