wav2vec2-xls-r-1b-E6-faroese-100h-30-epochs_20250209

This model is a fine-tuned version of davidilag/wav2vec2-xls-r-1b-scandinavian-E6-25h-30-epochs-20250208_v6 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1050
  • Wer: 18.8307
  • Cer: 4.0997

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.547 0.4877 1000 0.3462 41.2213 11.5859
0.4224 0.9754 2000 0.2269 32.1408 8.5514
0.3633 1.4628 3000 0.2090 30.8719 8.0929
0.3533 1.9505 4000 0.2088 30.2815 7.8933
0.2868 2.4379 5000 0.2205 31.0349 8.1158
0.2877 2.9256 6000 0.2017 29.4797 7.5548
0.2775 3.4131 7000 0.1781 28.1447 7.2258
0.2577 3.9008 8000 0.1727 28.0213 6.9702
0.231 4.3882 9000 0.1703 27.1886 6.8187
0.2474 4.8759 10000 0.1670 27.0785 6.7642
0.2099 5.3633 11000 0.1699 26.2766 6.5559
0.2237 5.8510 12000 0.1597 26.0563 6.4605
0.1814 6.3385 13000 0.1475 25.0738 6.1259
0.1749 6.8261 14000 0.1475 25.3514 6.2017
0.1635 7.3136 15000 0.1557 24.9284 6.0273
0.1556 7.8013 16000 0.1540 24.7169 5.9942
0.14 8.2887 17000 0.1444 24.3160 5.8545
0.1444 8.7764 18000 0.1433 24.0913 5.8214
0.1144 9.2638 19000 0.1367 23.8974 5.7070
0.1347 9.7515 20000 0.1364 23.6771 5.6446
0.1157 10.2390 21000 0.1308 23.3511 5.5428
0.1175 10.7267 22000 0.1259 22.9854 5.4426
0.116 11.2141 23000 0.1358 22.8444 5.3756
0.1112 11.7018 24000 0.1213 22.7255 5.3125
0.096 12.1892 25000 0.1305 22.4303 5.2722
0.097 12.6769 26000 0.1295 22.5052 5.3061
0.0805 13.1644 27000 0.1261 21.7650 5.0600
0.083 13.6520 28000 0.1234 21.9412 5.0868
0.0716 14.1395 29000 0.1292 21.7782 5.0355
0.0761 14.6272 30000 0.1184 21.5271 4.9779
0.0736 15.1146 31000 0.1198 21.5095 4.9116
0.0713 15.6023 32000 0.1161 21.2407 4.8517
0.0687 16.0897 33000 0.1176 21.2671 4.8603
0.0526 16.5774 34000 0.1221 20.9191 4.7286
0.0517 17.0649 35000 0.1182 20.7781 4.7081
0.0624 17.5525 36000 0.1165 20.7428 4.6757
0.0476 18.0400 37000 0.1186 20.6239 4.6741
0.0437 18.5277 38000 0.1243 20.5754 4.6513
0.0489 19.0151 39000 0.1117 20.2934 4.5447
0.0445 19.5028 40000 0.1138 20.1789 4.5274
0.042 19.9905 41000 0.1108 19.9542 4.4477
0.0502 20.4779 42000 0.1119 19.9101 4.4374
0.0431 20.9656 43000 0.1108 19.8881 4.4003
0.0351 21.4531 44000 0.1097 19.8132 4.3830
0.0419 21.9407 45000 0.1124 19.7559 4.3869
0.0288 22.4282 46000 0.1095 19.4783 4.3136
0.0342 22.9159 47000 0.1117 19.5753 4.3285
0.0362 23.4033 48000 0.1075 19.4343 4.2686
0.0388 23.8910 49000 0.1075 19.3682 4.2607
0.0334 24.3784 50000 0.1121 19.2052 4.2181
0.0267 24.8661 51000 0.1054 19.0862 4.1723
0.0338 25.3536 52000 0.1084 19.0113 4.1629
0.0291 25.8413 53000 0.1060 19.0950 4.1676
0.0274 26.3287 54000 0.1071 18.9144 4.1258
0.0255 26.8164 55000 0.1048 18.9188 4.1195
0.0227 27.3038 56000 0.1061 18.8968 4.1147
0.0302 27.7915 57000 0.1060 18.8659 4.1045
0.0298 28.2790 58000 0.1048 18.8791 4.1053
0.0281 28.7666 59000 0.1054 18.8659 4.1068
0.0341 29.2541 60000 0.1050 18.8351 4.1021
0.0393 29.7418 61000 0.1050 18.8307 4.0997

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
17
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for davidilag/wav2vec2-xls-r-1b-E6-faroese-100h-30-epochs_20250209