|
# YOLOv9 |
|
|
|
Implementation of paper - [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616) |
|
|
|
[![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2402.13616-B31B1B.svg)](https://arxiv.org/abs/2402.13616) |
|
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/kadirnar/Yolov9) |
|
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/merve/yolov9) |
|
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov9-object-detection-on-custom-dataset.ipynb) |
|
[![OpenCV](https://img.shields.io/badge/OpenCV-BlogPost-black?logo=opencv&labelColor=blue&color=black)](https://learnopencv.com/yolov9-advancing-the-yolo-legacy/) |
|
|
|
<div align="center"> |
|
<a href="./"> |
|
<img src="./figure/performance.png" width="79%"/> |
|
</a> |
|
</div> |
|
|
|
|
|
## Performance |
|
|
|
MS COCO |
|
|
|
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs | |
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | |
|
| [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** | |
|
| [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** | |
|
| [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** | |
|
| [**YOLOv9-C**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** | |
|
| [**YOLOv9-E**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** | |
|
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | --> |
|
|
|
<!-- tiny, small, and medium models will be released after the paper be accepted and published. --> |
|
|
|
## Useful Links |
|
|
|
<details><summary> <b>Expand</b> </summary> |
|
|
|
Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297 |
|
|
|
ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461 |
|
|
|
TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309 |
|
|
|
QAT TensirRT: https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073 |
|
|
|
OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003 |
|
|
|
C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619 |
|
|
|
C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244 |
|
|
|
OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672 |
|
|
|
Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943 |
|
|
|
CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18 |
|
|
|
ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37 |
|
|
|
YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644 |
|
|
|
YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595 |
|
|
|
YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107 |
|
|
|
YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540 |
|
|
|
YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879 |
|
|
|
YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319 |
|
|
|
YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804 |
|
|
|
YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766 |
|
|
|
YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350 |
|
|
|
Comet logging: https://github.com/WongKinYiu/yolov9/pull/110 |
|
|
|
MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87 |
|
|
|
AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662 |
|
|
|
AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760 |
|
|
|
Conda environment: https://github.com/WongKinYiu/yolov9/pull/93 |
|
|
|
AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480 |
|
|
|
</details> |
|
|
|
|
|
## Installation |
|
|
|
Docker environment (recommended) |
|
<details><summary> <b>Expand</b> </summary> |
|
|
|
``` shell |
|
# create the docker container, you can change the share memory size if you have more. |
|
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3 |
|
|
|
# apt install required packages |
|
apt update |
|
apt install -y zip htop screen libgl1-mesa-glx |
|
|
|
# pip install required packages |
|
pip install seaborn thop |
|
|
|
# go to code folder |
|
cd /yolov9 |
|
``` |
|
|
|
</details> |
|
|
|
|
|
## Evaluation |
|
|
|
[`yolov9-c-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c-converted.pt) [`yolov9-e-converted.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e-converted.pt) [`yolov9-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-c.pt) [`yolov9-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-e.pt) [`gelan-c.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c.pt) [`gelan-e.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-e.pt) |
|
|
|
``` shell |
|
# evaluate converted yolov9 models |
|
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val |
|
|
|
# evaluate yolov9 models |
|
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val |
|
|
|
# evaluate gelan models |
|
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val |
|
``` |
|
|
|
You will get the results: |
|
|
|
``` |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530 |
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.702 |
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585 |
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.652 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.702 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760 |
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844 |
|
``` |
|
|
|
|
|
## Training |
|
|
|
Data preparation |
|
|
|
``` shell |
|
bash scripts/get_coco.sh |
|
``` |
|
|
|
* Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip) |
|
|
|
Single GPU training |
|
|
|
``` shell |
|
# train yolov9 models |
|
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
|
|
# train gelan models |
|
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
``` |
|
|
|
Multiple GPU training |
|
|
|
``` shell |
|
# train yolov9 models |
|
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
|
|
# train gelan models |
|
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 |
|
``` |
|
|
|
|
|
## Re-parameterization |
|
|
|
See [reparameterization.ipynb](https://github.com/WongKinYiu/yolov9/blob/main/tools/reparameterization.ipynb). |
|
|
|
|
|
## Inference |
|
|
|
<div align="center"> |
|
<a href="./"> |
|
<img src="./figure/horses_prediction.jpg" width="49%"/> |
|
</a> |
|
</div> |
|
|
|
``` shell |
|
# inference converted yolov9 models |
|
python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect |
|
|
|
# inference yolov9 models |
|
# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect |
|
|
|
# inference gelan models |
|
# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{wang2024yolov9, |
|
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information}, |
|
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark}, |
|
booktitle={arXiv preprint arXiv:2402.13616}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
``` |
|
@article{chang2023yolor, |
|
title={{YOLOR}-Based Multi-Task Learning}, |
|
author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark}, |
|
journal={arXiv preprint arXiv:2309.16921}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
|
|
## Teaser |
|
|
|
Parts of code of [YOLOR-Based Multi-Task Learning](https://arxiv.org/abs/2309.16921) are released in the repository. |
|
|
|
<div align="center"> |
|
<a href="./"> |
|
<img src="./figure/multitask.png" width="99%"/> |
|
</a> |
|
</div> |
|
|
|
#### Object Detection |
|
|
|
[`gelan-c-det.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt) |
|
|
|
`object detection` |
|
|
|
``` shell |
|
# coco/labels/{split}/*.txt |
|
# bbox or polygon (1 instance 1 line) |
|
python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c-det --hyp hyp.scratch-high.yaml --min-items 0 --epochs 300 --close-mosaic 10 |
|
``` |
|
|
|
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | |
|
| :-- | :-: | :-: | :-: | :-: | |
|
| [**GELAN-C-DET**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-det.pt) | 640 | 25.3M | 102.1G |**52.3%** | |
|
| [**YOLOv9-C-DET**]() | 640 | 25.3M | 102.1G | **53.0%** | |
|
|
|
#### Instance Segmentation |
|
|
|
[`gelan-c-seg.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt) |
|
|
|
`object detection` `instance segmentation` |
|
|
|
``` shell |
|
# coco/labels/{split}/*.txt |
|
# polygon (1 instance 1 line) |
|
python segment/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/segment/gelan-c-seg.yaml --weights '' --name gelan-c-seg --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10 |
|
``` |
|
|
|
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | |
|
| :-- | :-: | :-: | :-: | :-: | :-: | |
|
| [**GELAN-C-SEG**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-seg.pt) | 640 | 27.4M | 144.6G | **52.3%** | **42.4%** | |
|
| [**YOLOv9-C-SEG**]() | 640 | 27.4M | 145.5G | **53.3%** | **43.5%** | |
|
|
|
#### Panoptic Segmentation |
|
|
|
[`gelan-c-pan.pt`](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt) |
|
|
|
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation` |
|
|
|
``` shell |
|
# coco/labels/{split}/*.txt |
|
# polygon (1 instance 1 line) |
|
# coco/stuff/{split}/*.txt |
|
# polygon (1 semantic 1 line) |
|
python panoptic/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/panoptic/gelan-c-pan.yaml --weights '' --name gelan-c-pan --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10 |
|
``` |
|
|
|
| Model | Test Size | Param. | FLOPs | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sub>164k/10k</sub><sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> | |
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | |
|
| [**GELAN-C-PAN**](https://github.com/WongKinYiu/yolov9/releases/download/v0.1/gelan-c-pan.pt) | 640 | 27.6M | 146.7G | **52.6%** | **42.5%** | **39.0%/48.3%** | **52.7%** | **39.4%** | |
|
<!--| [**YOLOv9-C-PAN**]() | 640 | 28.8M | 187.0G | **%** | **%** | **** | **%** | **%** |--> |
|
|
|
#### Image Captioning (not yet released) |
|
|
|
<!--[`gelan-c-cap.pt`]()--> |
|
|
|
`object detection` `instance segmentation` `semantic segmentation` `stuff segmentation` `panoptic segmentation` `image captioning` |
|
|
|
``` shell |
|
# coco/labels/{split}/*.txt |
|
# polygon (1 instance 1 line) |
|
# coco/stuff/{split}/*.txt |
|
# polygon (1 semantic 1 line) |
|
# coco/annotations/*.json |
|
# json (1 split 1 file) |
|
python caption/train.py --workers 8 --device 0 --batch 32 --data coco.yaml --img 640 --cfg models/caption/gelan-c-cap.yaml --weights '' --name gelan-c-cap --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10 |
|
``` |
|
|
|
| Model | Test Size | AP<sup>box</sup> | AP<sup>mask</sup> | mIoU<sup>semantic</sup> | mIoU<sup>stuff</sup> | PQ<sup>panoptic</sup> | BLEU@4<sup>caption</sup> | CIDEr<sup>caption</sup> | |
|
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | |
|
| [**YOLOR-MT**]() | 640 | **51.0%** | **41.7%** | **49.6%** | **55.9%** | **40.5%** | **35.7** | **112.7** | |
|
<!--| [**GELAN-C-CAP**]() | 640 | **-** | **-** | **-** | **-** | **-** | **-** | **-** | |
|
| [**YOLOv9-C-CAP**]() | 640 | **-** | **-** | **-** | **-** | **-** | **-** | **-** |--> |
|
|
|
|
|
## Acknowledgements |
|
|
|
<details><summary> <b>Expand</b> </summary> |
|
|
|
* [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet) |
|
* [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor) |
|
* [https://github.com/WongKinYiu/yolov7](https://github.com/WongKinYiu/yolov7) |
|
* [https://github.com/VDIGPKU/DynamicDet](https://github.com/VDIGPKU/DynamicDet) |
|
* [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG) |
|
* [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5) |
|
* [https://github.com/meituan/YOLOv6](https://github.com/meituan/YOLOv6) |
|
|
|
</details> |
|
|