Datasets:
Histology images from uniform tumor regions in TCGA Whole Slide Images (TCGA-UT-Internal, TCGA-UT-External)
![TCGA Histology Dataset Logo](/datasets/dakomura/tcga-ut/media/main/logo.webp)
This repository provides a benchmarking framework for the TCGA histology image dataset originally published on Zenodo. It includes predefined train/validation/test splits and example code for foundation model evaluation.
Task
Classification of 31 different cancer types from tumor histopathological images.
Original Dataset Description
This dataset contains 1,608,060 image patches of hematoxylin & eosin stained histological samples from various human cancers. The data was collected and processed as follows:
- Source: TCGA dataset from 32 solid cancer types (GDC legacy database, downloaded between December 1, 2016, and June 19, 2017)
- Initial data: 9,662 diagnostic slides from 7,951 patients in SVS format
- Annotation: At least three representative tumor regions were selected as polygons by two trained pathologists
- Quality control: 926 slides were removed due to poor staining, low resolution, out-of-focus issues, absence of cancerous regions, or incorrect cancer types
- Final dataset: 8,736 diagnostic slides from 7,175 patients
- Patch extraction: 10 patches at 0.5 μm/pixel resolution (128 x 128 μm) were randomly cropped from each annotated region
Note: Additional resolution levels are available in the original Zenodo dataset. Please refer to the Zenodo repository for the complete dataset.
TCGA Barcode format (TCGA-XX-XXXX) represents patient ID. For details, see the TCGA Barcode documentation.
Updates in This Version
The dataset has been modified and organized for benchmarking purposes:
Label Consolidation:
- Colon Adenocarcinoma (COAD) and Rectum Adenocarcinoma (READ) have been merged due to their histological similarity
Structured Splits:
Internal Split (70:15:15): TCGA-UT-Internal
- Ensures no patient overlap between train, validation, and test sets
- Approximate distribution: 70% train, 15% validation, 15% test
External Split: TCGA-UT-External
- Separates data based on medical facilities to evaluate cross-institutional generalization
- No facility overlap between train, validation, and test sets
- Maintains similar class distributions across splits
Dataset Details
Internal Split: TCGA-UT-Internal
case | train (patches) | valid (patches) | test (patches) | train (patients) | valid (patients) | test (patients) |
---|---|---|---|---|---|---|
Adrenocortical_carcinoma | 3480 | 750 | 750 | 35 | 8 | 8 |
Bladder_Urothelial_Carcinoma | 6990 | 1500 | 1500 | 202 | 43 | 44 |
Brain_Lower_Grade_Glioma | 16480 | 3530 | 3520 | 326 | 70 | 71 |
Breast_invasive_carcinoma | 16580 | 3550 | 3560 | 513 | 110 | 111 |
Cervical_squamous_cell_carcinoma_and_endocervical_adenocarcinoma | 4380 | 930 | 960 | 140 | 30 | 31 |
Cholangiocarcinoma | 630 | 120 | 150 | 21 | 4 | 5 |
Colon_Rectum_adenocarcinoma | 7020 | 1510 | 1500 | 190 | 41 | 41 |
Esophageal_carcinoma | 2360 | 510 | 510 | 78 | 17 | 17 |
Glioblastoma_multiforme | 16620 | 3570 | 3550 | 254 | 54 | 55 |
Head_and_Neck_squamous_cell_carcinoma | 8250 | 1770 | 1770 | 221 | 48 | 48 |
Kidney_Chromophobe | 1710 | 360 | 390 | 57 | 12 | 13 |
Kidney_renal_clear_cell_carcinoma | 8160 | 1740 | 1750 | 269 | 58 | 58 |
Kidney_renal_papillary_cell_carcinoma | 4750 | 1020 | 1020 | 149 | 32 | 33 |
Liver_hepatocellular_carcinoma | 5860 | 1250 | 1260 | 190 | 41 | 41 |
Lung_adenocarcinoma | 11520 | 2470 | 2470 | 303 | 65 | 66 |
Lung_squamous_cell_carcinoma | 11590 | 2490 | 2480 | 305 | 66 | 66 |
Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma | 570 | 120 | 150 | 19 | 4 | 5 |
Mesothelioma | 1470 | 320 | 300 | 42 | 9 | 10 |
Ovarian_serous_cystadenocarcinoma | 1740 | 390 | 390 | 58 | 13 | 13 |
Pancreatic_adenocarcinoma | 2850 | 620 | 620 | 88 | 19 | 19 |
Pheochromocytoma_and_Paraganglioma | 930 | 210 | 210 | 30 | 7 | 7 |
Prostate_adenocarcinoma | 6870 | 1470 | 1470 | 212 | 45 | 46 |
Sarcoma | 9440 | 2010 | 2030 | 149 | 32 | 32 |
Skin_Cutaneous_Melanoma | 7040 | 1510 | 1510 | 226 | 48 | 49 |
Stomach_adenocarcinoma | 6770 | 1450 | 1450 | 182 | 39 | 39 |
Testicular_Germ_Cell_Tumors | 4210 | 900 | 900 | 92 | 20 | 20 |
Thymoma | 2520 | 540 | 540 | 59 | 13 | 13 |
Thyroid_carcinoma | 7950 | 1710 | 1700 | 259 | 56 | 56 |
Uterine_Carcinosarcoma | 1470 | 320 | 330 | 34 | 7 | 8 |
Uterine_Corpus_Endometrial_Carcinoma | 8730 | 1890 | 1860 | 266 | 57 | 58 |
Uveal_Melanoma | 1140 | 240 | 260 | 38 | 8 | 9 |
Total | 190080 | 40770 | 40860 | 5007 | 1076 | 1092 |
External Split: TCGA-UT-External
case | train (patches) | valid (patches) | test (patches) | train (patients) | valid (patients) | test (patients) |
---|---|---|---|---|---|---|
Adrenocortical_carcinoma | 4500 | 390 | 90 | 45 | 5 | 1 |
Bladder_Urothelial_Carcinoma | 6990 | 1500 | 1500 | 190 | 50 | 49 |
Brain_Lower_Grade_Glioma | 16430 | 3540 | 3560 | 332 | 80 | 55 |
Breast_invasive_carcinoma | 16560 | 3570 | 3560 | 509 | 116 | 109 |
Cervical_squamous_cell_carcinoma_and_endocervical_adenocarcinoma | 4380 | 930 | 960 | 145 | 31 | 25 |
Cholangiocarcinoma | 660 | 150 | 90 | 22 | 5 | 3 |
Colon_Rectum_adenocarcinoma | 7020 | 1500 | 1510 | 197 | 39 | 36 |
Esophageal_carcinoma | 2360 | 510 | 510 | 78 | 17 | 17 |
Glioblastoma_multiforme | 16630 | 3810 | 3300 | 244 | 76 | 43 |
Head_and_Neck_squamous_cell_carcinoma | 8260 | 1750 | 1780 | 224 | 51 | 42 |
Kidney_Chromophobe | 1740 | 270 | 450 | 58 | 9 | 15 |
Kidney_renal_clear_cell_carcinoma | 8170 | 1710 | 1770 | 269 | 57 | 59 |
Kidney_renal_papillary_cell_carcinoma | 4750 | 1020 | 1020 | 146 | 34 | 34 |
Liver_hepatocellular_carcinoma | 5870 | 1300 | 1200 | 189 | 43 | 40 |
Lung_adenocarcinoma | 11530 | 2470 | 2460 | 288 | 77 | 69 |
Lung_squamous_cell_carcinoma | 11580 | 2490 | 2490 | 296 | 68 | 73 |
Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma | 600 | 90 | 150 | 20 | 3 | 5 |
Mesothelioma | 1470 | 300 | 320 | 43 | 10 | 8 |
Ovarian_serous_cystadenocarcinoma | 2220 | 120 | 180 | 74 | 4 | 6 |
Pancreatic_adenocarcinoma | 2860 | 600 | 630 | 85 | 20 | 21 |
Pheochromocytoma_and_Paraganglioma | 1170 | 90 | 90 | 38 | 3 | 3 |
Prostate_adenocarcinoma | 6870 | 1470 | 1470 | 226 | 49 | 28 |
Sarcoma | 9490 | 2070 | 1920 | 154 | 28 | 31 |
Skin_Cutaneous_Melanoma | 7030 | 1530 | 1500 | 233 | 40 | 50 |
Stomach_adenocarcinoma | 6990 | 1330 | 1350 | 187 | 37 | 36 |
Testicular_Germ_Cell_Tumors | 4600 | 630 | 780 | 96 | 10 | 26 |
Thymoma | 2520 | 540 | 540 | 54 | 18 | 13 |
Thyroid_carcinoma | 7980 | 1650 | 1730 | 259 | 54 | 58 |
Uterine_Carcinosarcoma | 1470 | 330 | 320 | 37 | 7 | 5 |
Uterine_Corpus_Endometrial_Carcinoma | 8730 | 1890 | 1860 | 272 | 48 | 61 |
Uveal_Melanoma | 1250 | 120 | 270 | 42 | 4 | 9 |
Total | 192680 | 39670 | 39360 | 5052 | 1093 | 1030 |
Foundation Model Benchmarking
We provide example implementations using four state-of-the-art foundation models:
See licenses/references.txt
for model citations.
Benchmark Results
Note: The provided script is a simplified example of training code. In practice, hyperparameter tuning and additional techniques were employed to achieve the following results.
Internal Split Results
Model | Accuracy | Balanced Accuracy |
---|---|---|
UNI2 | 0.8498 | 0.8500 |
H-Optimus | 0.8498 | 0.8398 |
Virchow2 | 0.8456 | 0.8355 |
UNI | 0.8142 | 0.7923 |
GigaPath | 0.8162 | 0.7877 |
CONCH | 0.7670 | 0.7301 |
External Split Results
Model | Accuracy | Balanced Accuracy |
---|---|---|
UNI2 | 0.7648 | 0.7262 |
H-Optimus | 0.7845 | 0.7213 |
Virchow2 | 0.7745 | 0.6922 |
UNI | 0.7373 | 0.6581 |
GigaPath | 0.7246 | 0.6377 |
CONCH | 0.6991 | 0.5974 |
Getting Started
- Clone this repository:
git clone [repository-url]
- Install dependencies:
pip install -r requirements.txt
- Login Hugging Face:
- The first time you run the program, you must log in with a Hugging Face account that has access to the dataset and the model you wish to use.
- (Optional) Setup:
- A notebook file
setup.ipynb
is provided for repository cloning, environment setup, and code execution. It has been confirmed to work in the Google Colaboratory environment.
Troubleshooting
Dependencies Installation
While requirements.txt
specifies version numbers for dependencies, some installations might require additional steps or alternative approaches depending on your system configuration:
SPAMS Library Installation
- If the standard SPAMS installation fails, try:
pip install spams-bin
- On some systems, you might need to install additional system libraries:
pip install PyOpenGL PyOpenGL_accelerate
Version Compatibility
- While we specify exact versions in
requirements.txt
, some dependencies might require different versions based on your hardware configuration - If you encounter compatibility issues, try installing without version constraints and test functionality
- While we specify exact versions in
Dataset Label Data Type Issues
When creating the dataset, there is a possibility that an error occurs due to the data type of the label. If you encounter such an issue, try modifying line 83 in extract_train.py
as follows:
From:
label = torch.tensor(self.labels[idx], dtype=torch.long)
To:
label = torch.tensor(int(self.labels[idx]), dtype=torch.long)
Data Loading Example
The dataset uses WebDataset format for efficient loading. Here's an example from extract_train.py
:
patterns = {
'train': [os.path.join(work_dir, f"data/dataset_{split}_train_part{str(i).zfill(3)}.tar") for i in range(39)],
'valid': [os.path.join(work_dir, f"data/dataset_{split}_valid_part{str(i).zfill(3)}.tar") for i in range(file_range)],
'test': [os.path.join(work_dir, f"data/dataset_{split}_test_part{str(i).zfill(3)}.tar") for i in range(file_range)],
}
dataset = wds.WebDataset(patterns[mode], shardshuffle=False) \
.shuffle(buffer_size, seed=42) \
.decode("pil").to_tuple("jpg", "json") \
.map_tuple(func_transform, lambda x: encode_labels([x["label"]], label_encoder))
Configuration and Usage
- Configure your experiment in
config.yaml
:
model_name: "h_optimus" # Model selection: "h_optimus", etc.
split_type: "internal" # Split type: "internal" or "external"
device: "cuda" # Computation device: "cuda" or "cpu"
feature_exist: True # Skip feature extraction if features already exist
max_iter: 1000 # Maximum iterations for training
cost: 0.0001 # Cost parameter for linear classifier
Configuration parameters:
model_name
: Foundation model to use for feature extractionsplit_type
: Dataset split strategydevice
: Computation device (GPU/CPU)feature_exist
: Skip feature extraction if True and features are already availablemax_iter
: Maximum training iterations for the linear classifiercost
: Regularization parameter for the linear classifier
- Define models and transforms in
extract_train.py
:
def get_model_transform(model_name):
# Add your model and transform definitions here
pass
- Run the experiment:
python extract_train.py
This will:
- Extract features using the specified foundation model
- Save features to H5 files
- Perform linear probing
- Output accuracy and balanced accuracy metrics
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA 4.0).
- For non-commercial use: Please use the dataset under CC-BY-NC-SA
- For commercial use: Please contact us at ishum-prm@m.u-tokyo.ac.jp
Citation
If you use this dataset, please cite the original paper:
@article{komura2022universal,
title={Universal encoding of pan-cancer histology by deep texture representations},
author={Komura, D., Kawabe, A., Fukuta, K., Sano, K., Umezaki, T., Koda, H., Suzuki, R., Tominaga, K., Ochi, M., Konishi, H., Masakado, F., Saito, N., Sato, Y., Onoyama, T., Nishida, S., Furuya, G., Katoh, H., Yamashita, H., Kakimi, K., Seto, Y., Ushiku, T., Fukayama, M., Ishikawa, S.},
journal={Cell Reports},
volume={38},
pages={110424},
year={2022},
doi={10.1016/j.celrep.2022.110424}
}
- Downloads last month
- 26