__key__
stringlengths
16
16
__url__
stringclasses
5 values
wav
audioduration (s)
0.75
10
json
dict
sample-000000000
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YUJxAKoY0gRM", "label": [ "Clarinet" ], "label_id": [ 198 ] }
sample-000000001
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YzVA66aZOBH4", "label": [ "Tabla", "Folk music", "Music", "Classical music", "Flute" ], "label_id": [ 170, 233, 137, 237, 196 ] }
sample-000000002
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YJqQVax-LLYM", "label": [ "Singing", "Music", "Salsa music" ], "label_id": [ 27, 137, 249 ] }
sample-000000003
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YFMuojRqMdJ4", "label": [ "Telephone" ], "label_id": [ 389 ] }
sample-000000004
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YpYaegEQ_wtI", "label": [ "Brass instrument", "Trumpet" ], "label_id": [ 185, 187 ] }
sample-000000005
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YwQYue6eZmlU", "label": [ "Organ", "Hammond organ" ], "label_id": [ 155, 157 ] }
sample-000000006
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YDrnXIEH46UQ", "label": [ "Giggle", "Speech", "Inside, small room" ], "label_id": [ 18, 0, 506 ] }
sample-000000007
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YjvZfiHM9s0A", "label": [ "Bird flight, flapping wings" ], "label_id": [ 121 ] }
sample-000000008
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y4Jg3aTetesY", "label": [ "Slam", "Speech" ], "label_id": [ 358, 0 ] }
sample-000000009
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yi5TlfRqdawk", "label": [ "Guitar", "Music", "Electronic tuner" ], "label_id": [ 140, 137, 462 ] }
sample-000000010
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YOA24pdxG9R4", "label": [ "Doorbell", "Music" ], "label_id": [ 355, 137 ] }
sample-000000011
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YUPYdnwApsik", "label": [ "Fart" ], "label_id": [ 60 ] }
sample-000000012
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YrlzTUDvJX4s", "label": [ "Grunt", "Speech" ], "label_id": [ 39, 0 ] }
sample-000000013
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YEGZ7G6X8FAI", "label": [ "Clock", "Speech" ], "label_id": [ 406, 0 ] }
sample-000000014
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YR0drT4ocmAg", "label": [ "Singing", "Bluegrass" ], "label_id": [ 27, 231 ] }
sample-000000015
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YvNZ3JS1LjDc", "label": [ "Music", "Reggae" ], "label_id": [ 137, 228 ] }
sample-000000016
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YBkObUW1WDhE", "label": [ "Computer keyboard", "Speech" ], "label_id": [ 386, 0 ] }
sample-000000017
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YXnHAH2aPHk0", "label": [ "Echo", "Effects unit", "Guitar", "Music", "Musical instrument", "Plucked string instrument" ], "label_id": [ 512, 463, 140, 137, 138, 139 ] }
sample-000000018
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YtC2bf968d8M", "label": [ "Doorbell", "Music" ], "label_id": [ 355, 137 ] }
sample-000000019
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yt0P9DEweEv4", "label": [ "Music", "Breaking" ], "label_id": [ 137, 470 ] }
sample-000000020
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YDMwvY--3XD0", "label": [ "Music", "Music for children" ], "label_id": [ 137, 252 ] }
sample-000000021
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YWaF4K6-22a0", "label": [ "Wild animals", "Animal" ], "label_id": [ 108, 72 ] }
sample-000000022
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YI4yKEKiFHPQ", "label": [ "Silence", "Single-lens reflex camera" ], "label_id": [ 500, 417 ] }
sample-000000023
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YrMhHl-nBS0U", "label": [ "Stomach rumble" ], "label_id": [ 57 ] }
sample-000000024
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YlPCl9s_Ea8A", "label": [ "Dial tone", "Speech", "Inside, small room" ], "label_id": [ 393, 0, 506 ] }
sample-000000025
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yzz0ddNfz0h0", "label": [ "Motor vehicle (road)", "Ice cream truck, ice cream van", "Vehicle", "Car" ], "label_id": [ 306, 320, 300, 307 ] }
sample-000000026
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YfEbFORMtEPc", "label": [ "Coin (dropping)" ], "label_id": [ 380 ] }
sample-000000027
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YGYOHFaVFp3o", "label": [ "Gunshot, gunfire", "Machine gun" ], "label_id": [ 427, 428 ] }
sample-000000028
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y6kYZXki6D7Q", "label": [ "Hammer" ], "label_id": [ 419 ] }
sample-000000029
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y4dcyo3VOmlA", "label": [ "Slam", "Speech", "Inside, large room or hall" ], "label_id": [ 358, 0, 507 ] }
sample-000000030
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YP2F4iNqJmNU", "label": [ "Brass instrument", "Wind instrument, woodwind instrument", "Shofar" ], "label_id": [ 185, 195, 212 ] }
sample-000000031
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YXeL3BAgfvz8", "label": [ "Environmental noise" ], "label_id": [ 514 ] }
sample-000000032
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y_iUC2AaJLMQ", "label": [ "Laughter", "Gargling", "Speech" ], "label_id": [ 16, 56, 0 ] }
sample-000000033
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YOneZesloYXY", "label": [ "Echo" ], "label_id": [ 512 ] }
sample-000000034
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YQOygXzuBWxM", "label": [ "Groan" ], "label_id": [ 38 ] }
sample-000000035
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YPutmxKNvMPw", "label": [ "Smoke detector, smoke alarm" ], "label_id": [ 399 ] }
sample-000000036
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YjDzNziarEAY", "label": [ "Laughter", "Bouncing", "Speech" ], "label_id": [ 16, 471, 0 ] }
sample-000000037
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YgVMoI2ukbtc", "label": [ "Music", "Rhythm and blues" ], "label_id": [ 137, 226 ] }
sample-000000038
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YoQm0ck6H2eE", "label": [ "Singing", "Music", "Bang" ], "label_id": [ 27, 137, 466 ] }
sample-000000039
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YTYJiQ-03tBI", "label": [ "Fowl", "Goose" ], "label_id": [ 98, 106 ] }
sample-000000040
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YJ8Kx1I1B5V4", "label": [ "Siren", "Civil defense siren" ], "label_id": [ 396, 397 ] }
sample-000000041
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YnhTYKp8lDcc", "label": [ "Splash, splatter", "Water", "Speech" ], "label_id": [ 445, 288, 0 ] }
sample-000000042
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yzcdak4rLVOY", "label": [ "Filing (rasp)", "Rub" ], "label_id": [ 422, 476 ] }
sample-000000043
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yh4K-y_MkgL0", "label": [ "Music", "Quack", "Duck", "Animal" ], "label_id": [ 137, 105, 104, 72 ] }
sample-000000044
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YawCVWdqFxDs", "label": [ "Bus", "Vehicle" ], "label_id": [ 321, 300 ] }
sample-000000045
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YtbylGZuMU7c", "label": [ "Roar", "Animal" ], "label_id": [ 110, 72 ] }
sample-000000046
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y7cw7rDLcujI", "label": [ "Music", "Music for children", "Speech" ], "label_id": [ 137, 252, 0 ] }
sample-000000047
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YWxaM1IuJ2QU", "label": [ "Drum and bass", "Music" ], "label_id": [ 243, 137 ] }
sample-000000048
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y2xfcPqA3dlU", "label": [ "Singing", "Carnatic music", "Music" ], "label_id": [ 27, 261, 137 ] }
sample-000000049
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YxsolNtN0PmA", "label": [ "Tabla", "Percussion" ], "label_id": [ 170, 161 ] }
sample-000000050
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YXModQLyMHb4", "label": [ "Clock", "Train", "Speech" ], "label_id": [ 406, 329, 0 ] }
sample-000000051
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YbbMiVL0LBjA", "label": [ "Organ", "Electronic organ" ], "label_id": [ 155, 156 ] }
sample-000000052
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yx1Wghs_aoNw", "label": [ "Air horn, truck horn", "Vehicle horn, car horn, honking", "Speech", "Outside, urban or manmade" ], "label_id": [ 318, 308, 0, 509 ] }
sample-000000053
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y1TGd0asihZw", "label": [ "Music", "Rattle (instrument)" ], "label_id": [ 137, 175 ] }
sample-000000054
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YCZysUOZ1B7M", "label": [ "Babbling", "Child speech, kid speaking" ], "label_id": [ 6, 3 ] }
sample-000000055
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YDwhwLZ5_EaU", "label": [ "Vehicle", "Helicopter", "Aircraft" ], "label_id": [ 300, 339, 335 ] }
sample-000000056
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y85OkNNiEJ44", "label": [ "Speech", "Microwave oven" ], "label_id": [ 0, 368 ] }
sample-000000057
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y20PVszdZws8", "label": [ "Music", "Rhythm and blues", "Soundtrack music" ], "label_id": [ 137, 226, 270 ] }
sample-000000058
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YnRqLp_ECINQ", "label": [ "Background music", "Music" ], "label_id": [ 267, 137 ] }
sample-000000059
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YyGXohnxCLCA", "label": [ "Carnatic music", "New-age music", "Music", "Speech" ], "label_id": [ 261, 253, 137, 0 ] }
sample-000000060
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YMNlzpCwdh4g", "label": [ "Brass instrument", "French horn" ], "label_id": [ 185, 186 ] }
sample-000000061
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YzfnIu7BWsZA", "label": [ "Crumpling, crinkling", "Inside, small room" ], "label_id": [ 479, 506 ] }
sample-000000062
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YFTWOCoFq5j8", "label": [ "Mains hum", "Hum" ], "label_id": [ 516, 496 ] }
sample-000000063
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YxAGCvwd1-xk", "label": [ "Heart sounds, heartbeat", "Throbbing", "Hum" ], "label_id": [ 64, 522, 496 ] }
sample-000000064
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y9NT6gEiqpWA", "label": [ "Railroad car, train wagon", "Train horn", "Rail transport", "Train" ], "label_id": [ 332, 331, 328, 329 ] }
sample-000000065
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YIuTLkt2wlUk", "label": [ "Timpani", "Music" ], "label_id": [ 169, 137 ] }
sample-000000066
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YFdqS0SPUYEM", "label": [ "Music", "Funny music" ], "label_id": [ 137, 277 ] }
sample-000000067
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y_ezunRBSAQA", "label": [ "Firecracker", "Music", "Speech" ], "label_id": [ 433, 137, 0 ] }
sample-000000068
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YxN9hN6P5fz4", "label": [ "Wild animals", "Environmental noise", "Animal" ], "label_id": [ 108, 514, 72 ] }
sample-000000069
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YUZYDN3DBkAk", "label": [ "Crowd", "Cheering", "Children shouting" ], "label_id": [ 69, 66, 13 ] }
sample-000000070
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yhki3nWzfRnY", "label": [ "Music", "Steelpan" ], "label_id": [ 137, 183 ] }
sample-000000071
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YVYu0OLR-eVM", "label": [ "Music", "Musical instrument", "Marimba, xylophone", "Vibraphone", "Percussion" ], "label_id": [ 137, 138, 180, 182, 161 ] }
sample-000000072
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YdwjoocPefeM", "label": [ "Shuffle", "Speech" ], "label_id": [ 52, 0 ] }
sample-000000073
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y9rVmT_jQlkM", "label": [ "Music", "Fireworks" ], "label_id": [ 137, 432 ] }
sample-000000074
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y0N_JKGLWEMc", "label": [ "Mains hum", "Hum", "Static" ], "label_id": [ 516, 496, 515 ] }
sample-000000075
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YxQRoLr5hnlY", "label": [ "Smoke detector, smoke alarm", "Speech" ], "label_id": [ 399, 0 ] }
sample-000000076
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YsAypnmdiCEk", "label": [ "Music", "Steel guitar, slide guitar" ], "label_id": [ 137, 144 ] }
sample-000000077
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YfU9woCZqemw", "label": [ "Bell", "Music" ], "label_id": [ 200, 137 ] }
sample-000000078
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YhG1l66pQaAY", "label": [ "Domestic animals, pets", "Speech", "Dog", "Growling", "Animal" ], "label_id": [ 73, 0, 74, 79, 72 ] }
sample-000000079
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YDjDu5IP4V74", "label": [ "Music", "Opera" ], "label_id": [ 137, 238 ] }
sample-000000080
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y-QivqOnaPIc", "label": [ "Dental drill, dentist's drill", "Speech" ], "label_id": [ 345, 0 ] }
sample-000000081
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YmTXBC3peZU0", "label": [ "Jet engine" ], "label_id": [ 337 ] }
sample-000000082
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YK7MqKXtsRFg", "label": [ "Music", "Rapping", "Hip hop music" ], "label_id": [ 137, 36, 217 ] }
sample-000000083
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YIZqK5tXjWh8", "label": [ "Scissors", "Speech" ], "label_id": [ 381, 0 ] }
sample-000000084
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Ykq05v9uyFwo", "label": [ "Music", "Shout" ], "label_id": [ 137, 8 ] }
sample-000000085
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YxwgQkNs904Q", "label": [ "Rustling leaves", "Speech" ], "label_id": [ 284, 0 ] }
sample-000000086
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Yq70ql6R9P8Y", "label": [ "Oink" ], "label_id": [ 94 ] }
sample-000000087
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YTS-ep4lVq_4", "label": [ "Music", "Mandolin" ], "label_id": [ 137, 149 ] }
sample-000000088
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y-efgThyiXWI", "label": [ "Cat", "Music", "Domestic animals, pets", "Caterwaul", "Speech", "Animal" ], "label_id": [ 81, 137, 73, 85, 0, 72 ] }
sample-000000089
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YSTs2rg4uLF0", "label": [ "Emergency vehicle", "Siren", "Police car (siren)" ], "label_id": [ 322, 396, 323 ] }
sample-000000090
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YSQelOwHTygo", "label": [ "Electric toothbrush", "Speech" ], "label_id": [ 376, 0 ] }
sample-000000091
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YDi7Rs4QmYKI", "label": [ "Brass instrument", "Foghorn", "Music" ], "label_id": [ 185, 401, 137 ] }
sample-000000092
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YJrXCwf9Qw6k", "label": [ "Splinter", "Wood" ], "label_id": [ 439, 437 ] }
sample-000000093
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y6eAnoN0hsE8", "label": [ "Stomach rumble" ], "label_id": [ 57 ] }
sample-000000094
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y_Rvxqek_b0E", "label": [ "Vibration", "Engine", "Speech" ], "label_id": [ 523, 343, 0 ] }
sample-000000095
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y8pAigLVDuns", "label": [ "Railroad car, train wagon", "Train horn", "Rail transport", "Train", "Train wheels squealing" ], "label_id": [ 332, 331, 328, 329, 333 ] }
sample-000000096
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "Y5wY6HWISVjk", "label": [ "Music", "Male singing" ], "label_id": [ 137, 32 ] }
sample-000000097
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YsYDsai4By_c", "label": [ "Tubular bells", "Gong" ], "label_id": [ 178, 177 ] }
sample-000000098
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YrhG_ie69Nwc", "label": [ "Music", "Bang", "Speech" ], "label_id": [ 137, 466, 0 ] }
sample-000000099
hf://datasets/confit/audioset-16khz-wds@4a40121a0063dd58d5d15f40f03c496eb3013906/20k/train/shard-00000.tar
{ "id": "YrbAJ6N8yOz0", "label": [ "Domestic animals, pets", "Pant", "Dog", "Animal" ], "label_id": [ 73, 45, 74, 72 ] }

AudioSet

AudioSet[1] is a large-scale dataset comprising approximately 2 million 10-second YouTube audio clips, categorised into 527 sound classes. We have pre-processed all audio files to a 16 kHz sampling rate and stored them in the WebDataset format for efficient large-scale training and retrieval.

Download

We recommend using the following commands to download the confit/audioset-16khz-wds dataset from HuggingFace. The dataset is available in two versions:

  • train:
    • 20k: A smaller balanced version with 20,550 clips for quick experimentation.
    • 500k[2]: A (slightly more) balanced version with 497,982 clips for quick experimentation.
    • 2m: The complete unbalanced dataset with 1,912,024 clips.
  • test: The eval set with 18,886 clips.
# For the 20k version
huggingface-cli download confit/audioset-16khz-wds --include 20k/train/*.tar  --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 20k/test/*.tar  --repo-type=dataset --local-dir /path/to/store

# For the 500k version
huggingface-cli download confit/audioset-16khz-wds --include 500k/train/*.tar  --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 500k/test/*.tar  --repo-type=dataset --local-dir /path/to/store

# For the 2m version
huggingface-cli download confit/audioset-16khz-wds --include 2m/train/*.tar  --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 2m/test/*.tar  --repo-type=dataset --local-dir /path/to/store

NOTE: The --local-dir /path/to/store argument specifies the root directory where the dataset will be stored. You do not need to manually create subdirectories (e.g., /path/to/store/20k/train). The command will automatically create the required folder structure.

split #shards #clips total duration avg duration
20k 7 20,550 56 hours 9.90 seconds
500k 147 497,982 1,371 hours 9.91 seconds
2m 565 1,912,024 5,264 hours 9.91 seconds
test 6 18,886 51 hours 9.89 seconds

Format and Usage

The dataset is stored in the WebDataset (WDS) format, which is optimised for distributed training and streaming. Each .tar archive contains audio files and corresponding metadata.

To load the dataset in Python using webdataset:

from glob import glob
from datasets import load_dataset

train_urls = glob('/path/to/20k/train/*.tar')
test_urls = glob('/path/to/20k/test/*.tar')

raw_datasets = load_dataset(
    "webdataset",
    data_files={"train": train_urls, "test": test_urls},
    streaming=False
)

Each sample in the dataset follows the WebDataset format, which includes the following fields:

{
    '__key__': 'sample-000000000',
    '__url__': '/path/to/20k/train/shard-00000.tar',
    'wav': {
        'path': 'sample-000000000.wav',
        'array': array([ 0., ..., -0.00256348]),
        'sampling_rate': 16000
    },
    'json': {
        'id': 'YUJxAKoY0gRM',
        'label': ['Clarinet'],
        'label_id': [198]
    }
}

References

[1] Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., ... & Ritter, M. (2017, March). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 776-780). IEEE.

[2] Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., & Sun, C. (2021). Attention bottlenecks for multimodal fusion. Advances in neural information processing systems, 34, 14200-14213.

License and Usage Restrictions

We downloaded the dataset from qiuqiangkong's GitHub and pre-processed it into WebDataset format. Please ensure compliance with YouTube's terms of service when using this dataset. Some clips may no longer be available if the original videos have been removed or made private.

Downloads last month
59