Datasets:
image
imagewidth (px) 980
980
|
---|
Gaussian Splats Dataset
3D Gaussian Splatting for Real-Time Radiance Field Rendering
Dataset Author: Paula Ramos
Created Using: 3D Gaussian Splatting Paper
Code Repository: GitHub - graphdeco-inria/gaussian-splatting
Description
This dataset consists of Gaussian Splats representations of different real-world scenes, created using the official 3D Gaussian Splatting method. Each scene folder contains:
A reference image representing the scene.
A PLY file stored in a point_cloud_folder, containing the Gaussian Splats reconstruction.
Overview
This dataset consists of Gaussian Splats representations of different real-world scenes, created using the official 3D Gaussian Splatting method. Each scene folder contains:
- A reference image representing the scene.
- Two PLY files stored in a
point_cloud_folder
, containing the Gaussian Splats reconstructions at iterations 7000 and 30000.
The dataset is structured as follows:
FO_dataset/
βββ drjohnson/ # Scene Folder
β βββ reference_image.png
β βββ point_cloud_folder/
β βββ reconstruction_7000.ply
β βββ reconstruction_30000.ply
βββ playroom/
β βββ reference_image.png
β βββ point_cloud_folder/
β βββ reconstruction_7000.ply
β βββ reconstruction_30000.ply
βββ train/
β βββ reference_image.png
β βββ point_cloud_folder/
β βββ reconstruction_7000.ply
β βββ reconstruction_30000.ply
βββ truck/
β βββ reference_image.png
β βββ point_cloud_folder/
β βββ reconstruction_7000.ply
β βββ reconstruction_30000.ply
How to Use the Dataset
1. Install the Required FiftyOne Plugin
To visualize all .ply
files using FiftyOne, download the Gaussian Splats plugin:
!fiftyone plugins download https://github.com/danielgural/ksplats_panel
2. Load & Visualize the Dataset with FiftyOne
Use the following Python script to load and explore the dataset in FiftyOne:
import fiftyone as fo
from fiftyone.utils.splats import SplatFile
# Create a FiftyOne dataset
dataset = fo.Dataset(name="splat-test", overwrite=True)
# Add samples (update paths as needed)
sample1 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png")
sample1["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_30000.ply")
sample2 = fo.Sample(filepath="FO_dataset/drjohnson/reference_image.png")
sample2["splat"] = SplatFile(filepath="FO_dataset/drjohnson/point_cloud_folder/reconstruction_7000.ply")
sample3 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png")
sample3["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_7000.ply")
sample4 = fo.Sample(filepath="FO_dataset/playroom/reference_image.png")
sample4["splat"] = SplatFile(filepath="FO_dataset/playroom/point_cloud_folder/reconstruction_30000.ply")
sample5 = fo.Sample(filepath="FO_dataset/train/reference_image.png")
sample5["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_7000.ply")
sample6 = fo.Sample(filepath="FO_dataset/train/reference_image.png")
sample6["splat"] = SplatFile(filepath="FO_dataset/train/point_cloud_folder/reconstruction_30000.ply")
sample7 = fo.Sample(filepath="FO_dataset/truck/reference_image.png")
sample7["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_7000.ply")
sample8 = fo.Sample(filepath="FO_dataset/truck/reference_image.png")
sample8["splat"] = SplatFile(filepath="FO_dataset/truck/point_cloud_folder/reconstruction_30000.ply")
# Add samples to the dataset
dataset.add_sample(sample1)
dataset.add_sample(sample2)
dataset.add_sample(sample3)
dataset.add_sample(sample4)
dataset.add_sample(sample5)
dataset.add_sample(sample6)
dataset.add_sample(sample7)
dataset.add_sample(sample8)
# Launch FiftyOne App
session = fo.launch_app(dataset, auto=False, port=5152)
Visualization Results
Below are sample screenshots showcasing the 3D Gaussian Splats reconstructions:
Drjohnson Scene
Playroom Scene
https://github.com/user-attachments/assets/1c3d3b6b-2b7b-4e93-8f5c-76a184f51260
Train Scene
https://github.com/user-attachments/assets/78ca63f5-1df9-4970-a50c-bfab0ee3615f
Truck Scene
Research & Applications
This dataset is useful for a variety of 3D vision and AI applications, including:
- NeRF & Gaussian Splatting Benchmarking
- 3D Scene Understanding & Reconstruction
- Multi-Modal AI (Images + 3D Point Clouds)
- Real-Time 3D Rendering Research
Citation
If you use this dataset, please cite the original 3D Gaussian Splatting paper:
@article{kerbl2023gsplatting,
title={3D Gaussian Splatting for Real-Time Radiance Field Rendering},
author={Kerbl, Bernhard and Kopanas, Georgios and LeimkΓΌhler, Thomas and Drettakis, George},
journal={arXiv preprint arXiv:2308.04079},
year={2023}
}
And also the link of this dataset in hugging Face: https://huggingface.co/datasets/pjramg/gaussian_splatting/
- Downloads last month
- 8