The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments
![](https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/teaser_c.png)
Dataset Summary
The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline (see image below) providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.
![](https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/VALERIE_overview1.png)
Each sequence of the dataset contains for each scene two rendered images. One is rendered with the default Blender tonemapping (/png) whereas the second is renderd with our photorealistic sensor simulation (see hagn2022optimized). The image below shows the difference of the two methods.
![](https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/SensorSimulation.png)
Following are some example images showing the unique characteristics of the different sequences.
Sequence0052 | Sequence0054 | Sequence0057 | Sequence0058 |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
Sequence0059 | Sequence0060 | Sequence0062 |
---|---|---|
![]() |
![]() |
![]() |
Supported Tasks
- pedestrian detection
- 2d object-detection
- 3d object-detection
- semantic-segmentation
- instance-segmentation
- ai-validation
Dataset Structure
VALERIE22
ββββintel_results_sequence_0050
β ββββground-truth
β β ββββ2d-bounding-box_json
β β β ββββcar-camera000-0000-{UUID}-0000.json
β β ββββ3d-bounding-box_json
β β β ββββcar-camera000-0000-{UUID}-0000.json
β β ββββclass-id_png
β β β ββββcar-camera000-0000-{UUID}-0000.png
β β ββββgeneral-globally-per-frame-analysis_json
β β β ββββcar-camera000-0000-{UUID}-0000.json
β β β ββββcar-camera000-0000-{UUID}-0000.csv
β β ββββsemantic-group-segmentation_png
β β β ββββcar-camera000-0000-{UUID}-0000.png
β β ββββsemantic-instance-segmentation_png
β β β ββββcar-camera000-0000-{UUID}-0000.png
β β β ββββcar-camera000-0000-{UUID}-0000
β β β β ββββ{Entity-ID}
β ββββsensor
β β ββββcamera
β β β ββββleft
β β β β ββββpng
β β β β β ββββcar-camera000-0000-{UUID}-0000.png
β β β β ββββpng_distorted
β β β β β ββββcar-camera000-0000-{UUID}-0000.png
ββββintel_results_sequence_0052
ββββintel_results_sequence_0054
ββββintel_results_sequence_0057
ββββintel_results_sequence_0058
ββββintel_results_sequence_0059
ββββintel_results_sequence_0060
ββββintel_results_sequence_0062
Data Splits
13476 images for trainining:
dataset = load_dataset("Intel/VALERIE22", split="train")
8406 images for validation and test:
dataset = load_dataset("Intel/VALERIE22", split="validation")
dataset = load_dataset("Intel/VALERIE22", split="test")
Licensing Information
CC BY 4.0
Grant Information
Generated within project KI-Abischerung with funding of the German Federal Ministry of Industry and Energy under grant number 19A19005M.
Citation Information
Relevant publications:
@misc{grau2023valerie22,
title={VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments},
author={Oliver Grau and Korbinian Hagn},
year={2023},
eprint={2308.09632},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{hagn2022increasing,
title={Increasing pedestrian detection performance through weighting of detection impairing factors},
author={Hagn, Korbinian and Grau, Oliver},
booktitle={Proceedings of the 6th ACM Computer Science in Cars Symposium},
pages={1--10},
year={2022}
}
@inproceedings{hagn2022validation,
title={Validation of Pedestrian Detectors by Classification of Visual Detection Impairing Factors},
author={Hagn, Korbinian and Grau, Oliver},
booktitle={European Conference on Computer Vision},
pages={476--491},
year={2022},
organization={Springer}
}
@incollection{grau2022variational,
title={A variational deep synthesis approach for perception validation},
author={Grau, Oliver and Hagn, Korbinian and Syed Sha, Qutub},
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
pages={359--381},
year={2022},
publisher={Springer International Publishing Cham}
}
@incollection{hagn2022optimized,
title={Optimized data synthesis for DNN training and validation by sensor artifact simulation},
author={Hagn, Korbinian and Grau, Oliver},
booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
pages={127--147},
year={2022},
publisher={Springer International Publishing Cham}
}
@inproceedings{syed2020dnn,
title={DNN analysis through synthetic data variation},
author={Syed Sha, Qutub and Grau, Oliver and Hagn, Korbinian},
booktitle={Proceedings of the 4th ACM Computer Science in Cars Symposium},
pages={1--10},
year={2020}
}
- Downloads last month
- 131