csikasote's picture
End of training
50eaedc verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - automatic-speech-recognition
  - nyagen
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: xls-r-300m-nyagen-combined-hp-tuning-test-model
    results: []

xls-r-300m-nyagen-combined-hp-tuning-test-model

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the NYAGEN - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2689
  • Wer: 0.2677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0009268613959558291
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 2.2254 100 2.9001 1.0
No log 4.4507 200 0.8376 0.7849
No log 6.6761 300 0.3087 0.4330
No log 8.9014 400 0.2516 0.3765
30.7137 11.1127 500 0.2612 0.3434
30.7137 13.3380 600 0.2403 0.3230
30.7137 15.5634 700 0.2480 0.3156
30.7137 17.7887 800 0.2546 0.2939
30.7137 20.0 900 0.2638 0.2919
1.8035 22.2254 1000 0.2689 0.2675

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0