skips the thinking process
I am facing an issue with the DeepSeek r1 AWQ model deployed using vLLM. In stream mode, the model consistently skips the thinking process and outputs only "\n\n" instead of generating meaningful responses.
Has anyone else encountered this behavior? Any suggestions on how to resolve this?
Which vLLM version are you using, what's your startup command, and what are the GPUs that you're using?
Thanks for your help! 😊
vLLM Version: 0.7.2
Startup Command: python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 32768 --trust-remote-code --tensor-parallel-size 8 --quantization moe_wna16 --gpu-memory-utilization 0.97 --kv-cache-dtype fp8_e5m2 --calculate-kv-scales --served-model-name deepseek-reasoner --model cognitivecomputations/DeepSeek-R1-AWQ --enable-reasoning --reasoning-parser deepseek_r1
GPU Configuration: 8 * A800
--enable-reasoning --reasoning-parser deepseek_r1
This will make the streaming output format slightly different, if you don't want to add special support for this, simply remove these 2 flags and it will work.
thanks I'll try it out
Thanks for your help! 😊
vLLM Version: 0.7.2
Startup Command: python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 32768 --trust-remote-code --tensor-parallel-size 8 --quantization moe_wna16 --gpu-memory-utilization 0.97 --kv-cache-dtype fp8_e5m2 --calculate-kv-scales --served-model-name deepseek-reasoner --model cognitivecomputations/DeepSeek-R1-AWQ --enable-reasoning --reasoning-parser deepseek_r1
GPU Configuration: 8 * A800
Does A100 support "--kv-cache-dtype fp8_e5m2"?