See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: codellama/CodeLlama-7b-hf
bf16: true
chat_template: llama3
data_processes: 24
dataset_prepared_path: null
datasets:
- data_files:
- aa051603106968ea_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/aa051603106968ea_train_data.json
type:
field_input: formatted_prompt
field_instruction: prompt
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 4
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: cilorku/f69ebf43-2bb4-4d87-a977-d51a836571e6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.08
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/aa051603106968ea_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-8
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 17333
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 64
train_batch_size: 8
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c243261f-2131-489a-bfa5-15f787947517
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c243261f-2131-489a-bfa5-15f787947517
warmup_steps: 150
weight_decay: 0.01
xformers_attention: null
f69ebf43-2bb4-4d87-a977-d51a836571e6
This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2508
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 17333
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 150
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.303 | 0.0011 | 1 | 1.7489 |
1.8352 | 0.0549 | 50 | 1.5569 |
1.3056 | 0.1099 | 100 | 1.3626 |
1.2119 | 0.1648 | 150 | 1.3040 |
1.1948 | 0.2198 | 200 | 1.2508 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for cilorku/f69ebf43-2bb4-4d87-a977-d51a836571e6
Base model
codellama/CodeLlama-7b-hf