Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: DeepMount00/Llama-3-8b-Ita
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b629509bbbeba9a1_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b629509bbbeba9a1_train_data.json
  type:
    field_instruction: abstr
    field_output: title
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: auxyus/29035b27-9090-47ea-b7c3-99021f8d80a3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/b629509bbbeba9a1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 44f05a70-92c0-4f62-98c0-1bac7ece0232
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 44f05a70-92c0-4f62-98c0-1bac7ece0232
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

29035b27-9090-47ea-b7c3-99021f8d80a3

This model is a fine-tuned version of DeepMount00/Llama-3-8b-Ita on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 2.6324
2.1702 0.0006 9 1.9401
1.3154 0.0012 18 1.2670
1.1844 0.0018 27 1.1796
1.1539 0.0024 36 1.1560
1.1562 0.0030 45 1.1422
1.2425 0.0036 54 1.1337
1.1451 0.0042 63 1.1298
1.1386 0.0048 72 1.1263
1.1269 0.0055 81 1.1246
1.1482 0.0061 90 1.1237
1.074 0.0067 99 1.1235

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for auxyus/29035b27-9090-47ea-b7c3-99021f8d80a3

Adapter
(305)
this model