You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

w2v-bert-2.0-CV_Fleurs_AMMI_ALFFA-sw-1hrs-v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6602
  • Wer: 0.2878
  • Cer: 0.1026

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.983 1.0 36 1.7051 0.9515 0.3287
1.0291 2.0 72 0.9615 0.4801 0.1423
0.8511 3.0 108 0.9519 0.3846 0.1234
0.6501 4.0 144 0.8922 0.3603 0.1195
0.6038 5.0 180 0.8740 0.3454 0.1152
0.4398 6.0 216 0.8208 0.3440 0.1185
0.3469 7.0 252 0.9068 0.3149 0.1077
0.2994 8.0 288 1.0320 0.3162 0.1079
0.3113 9.0 324 0.9206 0.3428 0.1234
0.2526 10.0 360 0.9717 0.3259 0.1124
0.201 11.0 396 0.9481 0.3150 0.1075
0.1847 12.0 432 1.1182 0.3107 0.1071
0.1647 13.0 468 1.0242 0.3073 0.1079
0.1512 14.0 504 1.0811 0.3072 0.1057
0.1276 15.0 540 1.0980 0.3179 0.1093
0.1089 16.0 576 1.1270 0.3233 0.1121
0.0936 17.0 612 1.1667 0.3084 0.1073
0.0782 18.0 648 1.1668 0.3236 0.1128
0.0792 19.0 684 1.1288 0.3346 0.1158
0.07 20.0 720 1.2678 0.3136 0.1104
0.0648 21.0 756 1.1550 0.3323 0.1172
0.0545 22.0 792 1.3441 0.3029 0.1070
0.0531 23.0 828 1.1785 0.3315 0.1149
0.0446 24.0 864 1.3664 0.3008 0.1082
0.0402 25.0 900 1.2758 0.3408 0.1158
0.0399 26.0 936 1.2697 0.3297 0.1158
0.0421 27.0 972 1.3760 0.3032 0.1072
0.0343 28.0 1008 1.3026 0.3242 0.1166
0.0295 29.0 1044 1.4635 0.3015 0.1071
0.0239 30.0 1080 1.5792 0.2977 0.1045
0.0247 31.0 1116 1.5481 0.3025 0.1074
0.0281 32.0 1152 1.4719 0.3137 0.1120
0.0215 33.0 1188 1.5960 0.3000 0.1070
0.0275 34.0 1224 1.6266 0.3012 0.1088
0.0622 35.0 1260 1.2910 0.3051 0.1068
0.0199 36.0 1296 1.4565 0.3035 0.1062
0.02 37.0 1332 1.4058 0.3064 0.1076
0.0155 38.0 1368 1.5731 0.2924 0.1043
0.015 39.0 1404 1.5122 0.3001 0.1077
0.0087 40.0 1440 1.5725 0.2854 0.1021
0.009 41.0 1476 1.5065 0.3007 0.1064
0.0125 42.0 1512 1.4685 0.3021 0.1072
0.0101 43.0 1548 1.5506 0.2953 0.1031
0.0106 44.0 1584 1.5395 0.3052 0.1083
0.0144 45.0 1620 1.5647 0.2896 0.1031
0.0098 46.0 1656 1.5343 0.2886 0.1032
0.0103 47.0 1692 1.6054 0.2918 0.1037
0.0143 48.0 1728 1.5473 0.2911 0.1054
0.0062 49.0 1764 1.6744 0.2869 0.1023
0.0056 50.0 1800 1.6602 0.2878 0.1026

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
31
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for asr-africa/w2v-bert-2.0-CV_Fleurs_AMMI_ALFFA-sw-1hrs-v1

Finetuned
(240)
this model

Collection including asr-africa/w2v-bert-2.0-CV_Fleurs_AMMI_ALFFA-sw-1hrs-v1