convnext-tiny-224-finetuned-barkley
This model is a fine-tuned version of facebook/convnext-tiny-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0128
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
- Top1 Accuracy: 1.0
- Error Rate: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
---|---|---|---|---|---|---|---|---|---|
1.6288 | 1.0 | 38 | 1.6005 | 0.2133 | 0.2697 | 0.2043 | 0.2371 | 0.2697 | 0.7629 |
1.6059 | 2.0 | 76 | 1.5802 | 0.2384 | 0.2763 | 0.2243 | 0.2473 | 0.2763 | 0.7527 |
1.5808 | 3.0 | 114 | 1.5570 | 0.2778 | 0.3026 | 0.2595 | 0.2744 | 0.3026 | 0.7256 |
1.5555 | 4.0 | 152 | 1.5291 | 0.3831 | 0.375 | 0.3491 | 0.3511 | 0.375 | 0.6489 |
1.5232 | 5.0 | 190 | 1.4933 | 0.4252 | 0.4408 | 0.4154 | 0.4147 | 0.4408 | 0.5853 |
1.4784 | 6.0 | 228 | 1.4484 | 0.5076 | 0.5197 | 0.4926 | 0.4972 | 0.5197 | 0.5028 |
1.4242 | 7.0 | 266 | 1.3902 | 0.6857 | 0.6382 | 0.6307 | 0.6249 | 0.6382 | 0.3751 |
1.3586 | 8.0 | 304 | 1.3186 | 0.7728 | 0.7171 | 0.7166 | 0.7134 | 0.7171 | 0.2866 |
1.276 | 9.0 | 342 | 1.2236 | 0.8547 | 0.8026 | 0.8109 | 0.8060 | 0.8026 | 0.1940 |
1.1778 | 10.0 | 380 | 1.1122 | 0.8899 | 0.8553 | 0.8609 | 0.8601 | 0.8553 | 0.1399 |
1.0543 | 11.0 | 418 | 0.9839 | 0.9064 | 0.8947 | 0.8958 | 0.9005 | 0.8947 | 0.0995 |
0.921 | 12.0 | 456 | 0.8418 | 0.9541 | 0.9539 | 0.9537 | 0.9575 | 0.9539 | 0.0425 |
0.773 | 13.0 | 494 | 0.6935 | 0.9624 | 0.9605 | 0.9605 | 0.9652 | 0.9605 | 0.0348 |
0.6204 | 14.0 | 532 | 0.5515 | 0.9688 | 0.9671 | 0.9672 | 0.9708 | 0.9671 | 0.0292 |
0.4835 | 15.0 | 570 | 0.4146 | 0.9704 | 0.9671 | 0.9676 | 0.9697 | 0.9671 | 0.0303 |
0.3641 | 16.0 | 608 | 0.3043 | 0.9805 | 0.9803 | 0.9802 | 0.9830 | 0.9803 | 0.0170 |
0.2706 | 17.0 | 646 | 0.2247 | 0.9805 | 0.9803 | 0.9802 | 0.9830 | 0.9803 | 0.0170 |
0.1998 | 18.0 | 684 | 0.1705 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
0.1446 | 19.0 | 722 | 0.1271 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
0.1106 | 20.0 | 760 | 0.1047 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
0.0872 | 21.0 | 798 | 0.0780 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
0.0614 | 22.0 | 836 | 0.0739 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
0.0491 | 23.0 | 874 | 0.0517 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
0.0365 | 24.0 | 912 | 0.0401 | 0.9871 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 |
0.0255 | 25.0 | 950 | 0.0336 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
0.0212 | 26.0 | 988 | 0.0377 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
0.0175 | 27.0 | 1026 | 0.0195 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
0.0125 | 28.0 | 1064 | 0.0214 | 0.9936 | 0.9934 | 0.9934 | 0.9933 | 0.9934 | 0.0067 |
0.0155 | 29.0 | 1102 | 0.0128 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
0.0104 | 30.0 | 1140 | 0.0159 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 200
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for alyzbane/convnext-tiny-224-finetuned-barkley
Base model
facebook/convnext-tiny-224