|
--- |
|
language: |
|
- en |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- mistral |
|
- trl |
|
base_model: alnrg2arg/blockchainlabs_7B_merged_test2_4 |
|
datasets: |
|
- Intel/orca_dpo_pairs |
|
--- |
|
|
|
This is a model from blockchainlab test 2.4 - alnrg2arg/blockchainlabs_7B_merged_test2_4. |
|
|
|
The project is running to make a small LLM for a on-device purpose. |
|
|
|
Overall pipeline for this iteration is |
|
|
|
1.Merging to make a base model (7B) 2.Prune the model to reduce the parameter (50% sparcity) 3.For recovery phase of the pruning, the DPO is chosen. |
|
|
|
This model which is not pruned is intended to compare with the pruned model. |
|
|
|
This is the code and parameters I chose for this model(DPO). |
|
``` |
|
from transformers import TrainingArguments, AutoModelForCausalLM |
|
from trl import DPOTrainer |
|
|
|
dpo_trainer = DPOTrainer( |
|
model = model, |
|
|
|
ref_model = None, |
|
args = TrainingArguments( |
|
per_device_train_batch_size = 8, |
|
gradient_accumulation_steps = 8, |
|
warmup_ratio = 0.1, |
|
num_train_epochs = 3, |
|
learning_rate = 5e-6, |
|
fp16 = not torch.cuda.is_bf16_supported(), |
|
bf16 = torch.cuda.is_bf16_supported(), |
|
logging_steps = 1, |
|
optim = "adamw_8bit", |
|
weight_decay = 0.0, |
|
lr_scheduler_type = "linear", |
|
seed = 42, |
|
output_dir = "output_DPO", |
|
), |
|
beta = 0.1, |
|
train_dataset = dataset, |
|
# eval_dataset = raw_datasets["test"], |
|
tokenizer = tokenizer, |
|
max_length = 1024, |
|
max_prompt_length = 512, |
|
) |
|
``` |
|
The code and parameters are borrowed from https://colab.research.google.com/drive/1SKrKGV-BZoU4kv5q3g0jtE_OhRgPtrrQ?usp=sharing |
|
|
|
|
|
Benchmark Scores |
|
|
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|-------------|------:|------|-----:|--------|-----:|---|-----:| |
|
|arc_challenge| 1|none | 0|acc |0.6894|± |0.0135| |
|
| | |none | 0|acc_norm|0.6860|± |0.0136| |
|
|
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|---------|------:|------|-----:|--------|-----:|---|-----:| |
|
|hellaswag| 1|none | 0|acc |0.7092|± |0.0045| |
|
| | |none | 0|acc_norm|0.8736|± |0.0033| |
|
|
|
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |
|
|--------------|------:|------|-----:|------|-----:|---|-----:| |
|
|truthfulqa_mc2| 2|none | 0|acc |0.7126|± | 0.015| |
|
|
|
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |
|
|------------------|-------|------|-----:|------|-----:|---|-----:| |
|
|mmlu |N/A |none | 0|acc |0.6225|± |0.1292| |
|
| - humanities |N/A |none | 0|acc |0.5745|± |0.1286| |
|
| - other |N/A |none | 0|acc |0.6952|± |0.1095| |
|
| - social_sciences|N/A |none | 0|acc |0.7280|± |0.0735| |
|
| - stem |N/A |none | 0|acc |0.5195|± |0.1313| |
|
|
|
| Tasks |Version|Filter|n-shot|Metric|Value| |Stderr| |
|
|----------|------:|------|-----:|------|----:|---|-----:| |
|
|winogrande| 1|none | 0|acc |0.824|± |0.0107| |
|
|
|
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |
|
|-----|------:|----------|-----:|-----------|-----:|---|-----:| |
|
|gsm8k| 2|get-answer| 5|exact_match|0.7263|± |0.0123| |
|
|
|
Average = 74.08 |