poisoned-baseline2

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 9.7330
  • Accuracy: 0.6466

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1307 1.0 130 1.0262 0.4962
1.0927 2.0 260 1.7590 0.2632
1.0507 3.0 390 2.1327 0.5188
1.0081 4.0 520 1.3239 0.5714
0.9565 5.0 650 1.1102 0.5489
0.7963 6.0 780 1.3624 0.6917
0.6663 7.0 910 5.5153 0.5564
0.6336 8.0 1040 5.0001 0.5940
0.5852 9.0 1170 9.5447 0.5489
0.5467 10.0 1300 6.4452 0.5714
0.5318 11.0 1430 12.3394 0.5038
0.5177 12.0 1560 3.9932 0.5940
0.4431 13.0 1690 1.7703 0.6541
0.4164 14.0 1820 4.0616 0.5038
0.4392 15.0 1950 1.3017 0.7744
0.4356 16.0 2080 1.1080 0.7293
0.3853 17.0 2210 5.3221 0.5789
0.3911 18.0 2340 1.3064 0.7143
0.3493 19.0 2470 8.7354 0.5564
0.3017 20.0 2600 1.4359 0.6466
0.3532 21.0 2730 5.5559 0.6241
0.2868 22.0 2860 3.5486 0.5263
0.3125 23.0 2990 7.4942 0.6617
0.326 24.0 3120 3.8914 0.7143
0.2561 25.0 3250 2.8141 0.6692
0.2923 26.0 3380 6.7704 0.6090
0.2311 27.0 3510 1.8806 0.7293
0.2274 28.0 3640 2.3829 0.6316
0.2481 29.0 3770 3.2873 0.5940
0.2612 30.0 3900 1.7361 0.7368
0.2541 31.0 4030 6.3135 0.6241
0.1998 32.0 4160 4.0907 0.6842
0.2628 33.0 4290 4.6728 0.7068
0.2515 34.0 4420 3.1405 0.6617
0.2352 35.0 4550 3.2859 0.7519
0.242 36.0 4680 0.8856 0.7594
0.2095 37.0 4810 5.4219 0.6692
0.2173 38.0 4940 9.1599 0.6842
0.1865 39.0 5070 2.9133 0.7293
0.2539 40.0 5200 10.3407 0.6241
0.2512 41.0 5330 4.8001 0.7218
0.2304 42.0 5460 8.2643 0.6767
0.1761 43.0 5590 6.4020 0.6466
0.1947 44.0 5720 2.3283 0.7293
0.2011 45.0 5850 3.2135 0.6842
0.1789 46.0 5980 2.5271 0.7218
0.1217 47.0 6110 3.5338 0.7218
0.197 48.0 6240 2.8379 0.7669
0.1378 49.0 6370 6.7036 0.6767
0.1641 50.0 6500 5.3123 0.6692
0.171 51.0 6630 29.0727 0.5489
0.1694 52.0 6760 3.9145 0.7669
0.1694 53.0 6890 20.2058 0.6015
0.0983 54.0 7020 3.0154 0.7444
0.0983 55.0 7150 4.5036 0.6992
0.1116 56.0 7280 15.8594 0.5564
0.1467 57.0 7410 1.9574 0.7744
0.1161 58.0 7540 7.0993 0.5940
0.1424 59.0 7670 5.0006 0.7368
0.0921 60.0 7800 10.6072 0.6015
0.1014 61.0 7930 3.9741 0.7368
0.1456 62.0 8060 2.6188 0.7744
0.2115 63.0 8190 5.3006 0.6617
0.1167 64.0 8320 3.2966 0.6992
0.0746 65.0 8450 2.1400 0.7594
0.0694 66.0 8580 5.7985 0.6767
0.0515 67.0 8710 3.5244 0.6767
0.0513 68.0 8840 4.2358 0.6917
0.1511 69.0 8970 6.8578 0.6541
0.1871 70.0 9100 12.4745 0.6617
0.114 71.0 9230 2.7450 0.7594
0.0438 72.0 9360 5.2159 0.6842
0.054 73.0 9490 3.8337 0.7143
0.1645 74.0 9620 12.4765 0.5789
0.0655 75.0 9750 3.4949 0.7143
0.0676 76.0 9880 3.7470 0.7293
0.1427 77.0 10010 9.8213 0.6316
0.099 78.0 10140 14.3845 0.6015
0.0943 79.0 10270 3.3007 0.7895
0.0971 80.0 10400 4.5807 0.6917
0.1338 81.0 10530 7.8281 0.6692
0.0494 82.0 10660 10.0532 0.6617
0.0384 83.0 10790 3.4354 0.7820
0.0781 84.0 10920 7.8234 0.6316
0.1122 85.0 11050 5.1243 0.7068
0.0965 86.0 11180 7.5119 0.6617
0.1852 87.0 11310 11.2423 0.6015
0.0512 88.0 11440 2.3147 0.7744
0.0456 89.0 11570 2.9752 0.7744
0.0479 90.0 11700 17.1507 0.6241
0.04 91.0 11830 2.8366 0.7068
0.1437 92.0 11960 16.1989 0.5789
0.0256 93.0 12090 3.2687 0.6917
0.0178 94.0 12220 3.8819 0.7068
0.0356 95.0 12350 2.6739 0.6992
0.1282 96.0 12480 8.0099 0.6466
0.0544 97.0 12610 11.1235 0.6466
0.0502 98.0 12740 4.4413 0.6241
0.0398 99.0 12870 26.8311 0.5188
0.1161 100.0 13000 9.7330 0.6466

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
195
Safetensors
Model size
2.26M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.