t5-small-xsum
This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:
- Loss: 2.3953
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8641 | 0.04 | 500 | 2.6202 |
2.7466 | 0.08 | 1000 | 2.5660 |
2.8767 | 0.12 | 1500 | 2.5319 |
2.7099 | 0.16 | 2000 | 2.5107 |
2.7752 | 0.2 | 2500 | 2.4922 |
2.6037 | 0.24 | 3000 | 2.4800 |
2.8236 | 0.27 | 3500 | 2.4677 |
2.7089 | 0.31 | 4000 | 2.4581 |
2.7299 | 0.35 | 4500 | 2.4498 |
2.7498 | 0.39 | 5000 | 2.4420 |
2.6186 | 0.43 | 5500 | 2.4346 |
2.7817 | 0.47 | 6000 | 2.4288 |
2.5559 | 0.51 | 6500 | 2.4239 |
2.6725 | 0.55 | 7000 | 2.4186 |
2.6316 | 0.59 | 7500 | 2.4149 |
2.5561 | 0.63 | 8000 | 2.4115 |
2.5708 | 0.67 | 8500 | 2.4097 |
2.5861 | 0.71 | 9000 | 2.4052 |
2.6363 | 0.74 | 9500 | 2.4024 |
2.7435 | 0.78 | 10000 | 2.4003 |
2.7258 | 0.82 | 10500 | 2.3992 |
2.6113 | 0.86 | 11000 | 2.3983 |
2.6006 | 0.9 | 11500 | 2.3972 |
2.5684 | 0.94 | 12000 | 2.3960 |
2.6181 | 0.98 | 12500 | 2.3953 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
- Downloads last month
- 20
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.