software_lab_billsum_model
This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:
- Loss: 2.5173
- Rouge1: 0.1422
- Rouge2: 0.0516
- Rougel: 0.1174
- Rougelsum: 0.1175
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 62 | 2.8088 | 0.1242 | 0.034 | 0.1027 | 0.1028 | 19.0 |
No log | 2.0 | 124 | 2.6031 | 0.1335 | 0.0437 | 0.1112 | 0.1113 | 19.0 |
No log | 3.0 | 186 | 2.5356 | 0.1394 | 0.0487 | 0.115 | 0.1149 | 19.0 |
No log | 4.0 | 248 | 2.5173 | 0.1422 | 0.0516 | 0.1174 | 0.1175 | 19.0 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for TusharsinghBaghel/software_lab_billsum_model
Base model
google-t5/t5-small