bert-base-uncased-issues-128
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.099 | 1.0 | 291 | 1.6869 |
1.6375 | 2.0 | 582 | 1.4308 |
1.4841 | 3.0 | 873 | 1.3859 |
1.397 | 4.0 | 1164 | 1.3731 |
1.3394 | 5.0 | 1455 | 1.1839 |
1.2819 | 6.0 | 1746 | 1.2912 |
1.2403 | 7.0 | 2037 | 1.2614 |
1.1983 | 8.0 | 2328 | 1.2071 |
1.1653 | 9.0 | 2619 | 1.1822 |
1.1407 | 10.0 | 2910 | 1.2134 |
1.1275 | 11.0 | 3201 | 1.2029 |
1.1064 | 12.0 | 3492 | 1.1685 |
1.0799 | 13.0 | 3783 | 1.2484 |
1.0776 | 14.0 | 4074 | 1.1658 |
1.0634 | 15.0 | 4365 | 1.1192 |
1.0607 | 16.0 | 4656 | 1.2484 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.12.1
- Datasets 2.8.0
- Tokenizers 0.10.3
- Downloads last month
- 110